Funktion: kulturhistorische Aspekte: Unterschied zwischen den Versionen

K
keine Bearbeitungszusammenfassung
[gesichtete Version][gesichtete Version]
Keine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Zeile 58: Zeile 58:


===Erörterung===
===Erörterung===
Während im 18. Jh. für '''Euler''' Funktionen noch entweder „analytische Ausdrücke“ (also „[[Term|Terme]]“ im heutigen Verständnis) oder „freihändig gezeichnete Kurven“ waren, begegnen uns darüber hinaus Funktionen im selben Jahrhundert (aus unserer heutigen Sicht) auch als graphisch oder tabellarisch dargestellte empirische Zusammenhänge, was im 19. Jh. über empirische Untersuchungen zunächst von '''Fourier''' und dann von seinem Schüler '''Dirichlet''' zu einem „termfreien“ Funktionsbegriff führte, bei dem die Funktionswerte keinem ''Bildungsgesetz'' mehr folgen (müssen). Der Grundlagenforscher und Mathematikhistoriker Ulrich Felgner schreibt hierzu: <ref>Felgner 2002, 624]</ref>  
Während im 18. Jh. für '''Euler''' Funktionen noch entweder „analytische Ausdrücke“ (also „[[Term|Terme]]“ im heutigen Verständnis) oder „freihändig gezeichnete Kurven“ waren, begegnen uns darüber hinaus Funktionen im selben Jahrhundert (aus unserer heutigen Sicht) auch als graphisch oder tabellarisch dargestellte empirische Zusammenhänge, was im 19. Jh. über empirische Untersuchungen zunächst von '''Fourier''' und dann von seinem Schüler '''Dirichlet''' zu einem „termfreien“ Funktionsbegriff führte, bei dem die Funktionswerte keinem ''Bildungsgesetz'' mehr folgen (müssen). Der Grundlagenforscher und Mathematikhistoriker [http://www.mathematik.uni-tuebingen.de/~logik/felgner.html Ulrich Felgner] schreibt hierzu: <ref>Felgner 2002, 624]</ref>  
:: Funktionen sind [...] bei Fourier und Dirichlet dem Begriffe nach eindeutige Zuordnungen. Im Begriff der Funktion ist die Definierbarkeit durch einen analytischen Ausdruck nicht eingeschlossen. Dieser Funktionsbegriff wird oft nur mit dem Namen Dirichlets in Verbindung gebracht, obwohl doch Fourier der eigentliche Urheber ist.
:: Funktionen sind [...] bei Fourier und Dirichlet dem Begriffe nach eindeutige Zuordnungen. Im Begriff der Funktion ist die Definierbarkeit durch einen analytischen Ausdruck nicht eingeschlossen. Dieser Funktionsbegriff wird oft nur mit dem Namen Dirichlets in Verbindung gebracht, obwohl doch Fourier der eigentliche Urheber ist.
:: [...] Funktionen im Sinne von Fourier und Dirichlet müssen weder differenzierbar noch stetig sein.
:: [...] Funktionen im Sinne von Fourier und Dirichlet müssen weder differenzierbar noch stetig sein.