Die Einführung von CAS (Computeralgebrasystemen) verändert die Aufgabenkultur im Mathematikunterricht, was sich insbesondere auf die Kurvendiskussion und die Herangehensweise an dieses Themenfeld auswirkt. Dabei hat die Einführung der CAS sowohl Einfluss auf die zu untersuchenden Funktionen als auch auf die Aufgabenstellungen. In vielen Bundesländern gehört die Nutzung eines CAS-Rechners bereits zum Standard im Oberstufenunterricht, was die Frage nach einer sinnvollen Anwendung dessen im Analysiskurs aufwirft.


Die neue Aufgabenkultur [1]

Da die klassischen Aufgaben der Kurvendiskussion mit einem CAS-Rechner sehr schnell und ohne Aufwand gelöst werden können, wird eine Veränderung der Aufgabenkultur angestrebt. Diese neue Aufgabenkultur versucht

  • die qualitative Analysis stärker zu betonen
  • interessante Anwendungskontexte einzubeziehen
  • neue Technologien wie beispielsweise den CAS-Recher sinnvoll und gewinnbringend zu nutzen


Anwendungem im Sinne echter modellbildender Aktivitäten, wie sie im Rahmen der Kompetenzorientierung, in diesem Fall zur der Ausbildung der Modellierungskompetenz, im Unterricht eingebracht werden sollen, erfordern eine tiefgehende Auseinandersetzung mit einem außermathematischen Kontext, welchen es in eine mathematische Form zu bringen gilt. Dies ist ein anspuchsvolles Gebiet, da zum Einen eine sachgerechte inhaltliche Beschreibung des Problemfeldes die Schüler und den Lehrer schnell überfordern kann. Zum Anderen ist eine geeignete Mathematisierung mit schulmathematischen Mitteln oft nicht realisierbar.

Im Folgenden sollen zwei Aufgaben dargestellt werden, welche die angesprochenen Aspekte berücksichtigen und die im zeitgemäßen Analysisunterricht in der Kursstufe verwendet werden können.


Aufgabenbeispiel 1: Die Milchtüte[2]

Wir betrachten eine Milchtüte mit einem Volumen von 1 Liter aus einem beliebigen Supermarkt. Es interessiert uns, ob der Hersteller darauf geachtet hat, so wenig Pappe wie möglich für die Herstellung zu verwenden.

 
Foto einer 1 L Milchtüte

Es handelt sich folglich um eine Optimierungsaufgabe.

Mögliches Vorgehen: Entleeren wir diese Milchtüte, trennen die Kleberänder und falten sie auf, erhalten wir folgendes Faltnetz:

 
Netz der Milchtüte



Wir entnehmen die Maße   und  . Damit ergibt sich ein Volumen von  . Erkennt man   und   als variierbare Größen, kommt man auf auf die Funktion für den Materialverbrauch:  

An dieser Stelle kann man nun den CAS-Rechner bemühen und sich den 3-D Plot darstellen lassen.

 
3D Plot mit Casio ClassPad 300

Doch ist dies leider noch nicht zielführend, da der Graph in seiner Gesamtheit nicht von Interesse ist. In diesem Zusammenhang wird klar, dass man die mit CAS-Rechnern gewonnenen Erkenntnisse stets kritisch zu hinterfragen hat. Es fehlt noch die Berücksichtigung der Nebenbedingung  

Unter Nutzung dieser Nebenbedingung eliminiert man   in   und erhält   mit  . Von dieser Funktion suchen wir jetzt das Minimum. Dass es ein solches gibt, zeigt uns wiederum der Plotter des CAS. An dieser Stelle ist es aber empfehlenswert, die Funktionsgleichung   qualitativ analytisch zu diskutieren. Man erkennt, dass für große und für kleine   groß wird, was bedeutet, dass das gesuchte Minimum irgendwo in der Mitte liegen muss. Jetzt wird man noch eine Monotoniebetrachtung durchführen und das Monotoniekriterium benutzen. Dies sichert die Existenz eines eindeutig bestimmten Minimums.

Hier sei explizit darauf hingewiesen, dass   eine Gleichung vierten Grades ist und von den Schülern nicht gelöst werden kann. Die Nutzung des CAS zur algebraischen Lösung ist aber auch nur bedingt geeignet, da die hochkomplexen algebraischen Wurzelterme erschrecken und sinnvoll interpretiert werden müssen. Es bietet sich die numerische Lösung des Rechners für das gesuchte Minumum an. Das Ergebnis   weicht stark vom realen Wert   ab. Dies kann nun weiterführend interpretiert werden.

Aufgabenbeispiel 2: Skihänge[3]

Die hier dargestellte Aufgabe zeigt die Nutzbarkeit und die Möglichkeiten eines CAS bei der Lösung einer darauf ausgelegten Musteraufgabe für das Abitur.

Aufgabe:

Ein Sportlehrer wollte sich auf ein Skilager gut vorbereiten. Zur Einteilung der Schülergruppen nach ihren Leistungen

erstellte er die Höhenprofile der Skihänge. Folgende Tabelle kam dabei heraus:  

a) Bestimmen Sie durch Regression die Gleichung einer ganzrationalen Funktion, die das Höhenprofil des Berges wiedergeben könnte.

Zuerst lässt man sich die Wertepaare mit dem CAS darstellen.  


Darauf aufbauen sollte eine Regression erfolgen, bei der man erkennt, dass in diesem Falle eine Funktion dritten Grades genügt.


 

Man erhält folgende Funktion als Lösung:  


Beim Schwierigkeitsgrad von Skipisten unterscheidet man zwischen:

  • blau: leicht, mit einer max. Neigung von 25%
  • rot: mittelschwer, mit einer max. Neigung von 40%
  • schwarz: anspruchsvoll, mit einer größeren Neigung als 40%

b) Ermitteln Sie die maximale Neigung der Skipiste und ordnen Sie diese der entsprechenden Farbe zu. Der Tourismusverband überlegt, auch den rechten Hang für den Wintersport zu nutzen.

Begründen Sie, weshalb dieses Vorhaben verworfen werden sollte.

Hier nutzt man die Solve- Funktion des CAS, mit der man sogar direkt erzwingen kann, dass auch ein Maximum ausgebenen wird, sollte es existieren.  

Der höchste Punkt besitzt die Koordinaten  . Die maximale Neigung findet man an den Wendepunkten und verfährt wie eben, nur dass man fordert, dass die zweite Ableitung der Funktion Null wird, jedoch die dritte nicht. Man erhält eine Wendestelle   auf dem linken Hang.

Durch Einsetzen erkennt man, dass für den rechten Hang die Neigung an der Intervallgrenze   am größten ist.

Ergebnisse: linker Skihang: hat maximale Neigung bei  ,  

Mit ca. 40% Neigung könnte man diese Piste mit schwarz oder rot markieren, da dies der direkte Grenzfall ist.

rechter Skihang:  

Mit einer maximalen Neigung von 139% ist dieser Hang zum Skifahren viel zu gefährlich. Er sollte nicht für den Tourismus erschlossen werden.

Quellen

  1. aus Danckwerts/Vogel:Analysis verständlich unterrichten, 1.Auflage 2006, Springer Verlag Berlin-Heidelberg
  2. aus Danckwerts/Vogel:Analysis verständlich unterrichten, 1.Auflage 2006, Springer Verlag Berlin-Heidelberg
  3. Die folgenden Informationen und Screenshots der Aufgabe sind aus: Abitur 2011, STARK Verlag, Zentralabitur LK Sachsen, Seite 90 ff.


Der Beitrag kann wie folgt zitiert werden:
Madipedia (2013): Kurvendiskussion mit CAS. Version vom 23.01.2013. In: dev_madipedia. URL: http://dev.madipedia.de/index.php?title=Kurvendiskussion_mit_CAS&oldid=9654.

math>cm^3