Eine „Lösungsmenge“ ist die „Menge aller Lösungen“ eines gegebenen mathematischen Problems unter gegebenen Bedingungen (wie etwa Anfangs- und Randbedingungen). Solche Bedingungen lassen sich mit Hilfe von Aussageformen beschreiben, so etwa mit einem System von Gleichungen und Ungleichungen. Im Mathematikunterricht geht es dann i. d. R. um Lösungsmengen von Gleichungen oder Ungleichungen.

Mathematischer Sachverhalt

Es sei   eine Aussageform und   eine Menge zulässiger bzw. sinnvoller Einsetzungen für   in  , sodass bei Einsetzung eines konkreten Wertes für   in   entweder eine wahre oder eine falsche Aussage entsteht.

Ist nun   und   (d. h.:   ist die Menge aller derjenigen Elemente aus  , die   in eine wahre Aussage überführen, die also   „lösen“) so heißt   „Lösungsmenge“ von   bezüglich der gewählten „Grundmenge“  , die man auch genauer mit   oder – wenn keine Missverständnisse entstehen – kurz mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L_{G}} bezeichnen könnte, um damit deutlich zu machen, dass diese Lösungsmenge nicht nur von der Aussageform Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A(x)} abhängig ist, sondern insbesondere auch von der jeweiligen Grundmenge Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G} . Diese Grundmenge kann z. B. eine Menge von Zahlen, von Zahlenpaaren, von Vektoren, von Funktionen, von geometrischen Objekten wie Punkten, Strecken, Figuren usw. sein. So hat beispielsweise eine numerische Gleichung per se noch keine Lösungsmenge, sondern diese hängt wesentlich von der gewählten Grundmenge ab.
Sofern die Grundmenge Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G} mehr als ein Elemente enthält (Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle |G| > 1} ), können prinzipielle folgende Fälle auftreten:

  1. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L=\varnothing} : Es gibt keine Lösung in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G} , die Aussageform ist in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G} unlösbar.
  2. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \varnothing\ne L\subset G} : Die Aussageform ist in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G} (teilweise) lösbar.
  3. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L=G} : Die Aussageform ist in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle G} allgemeingültig. (Sie ist natürlich auch in diesem Fall „lösbar“!)

Didaktische Aspekte

Es ist nicht sinnvoll, im Mathematikunterricht bei der Betrachtung von numerischen Gleichungen bereits dann von „Lösungsmengen“ zu sprechen, wenn noch nicht die Erfahrung gemacht worden ist, dass Gleichungen keine oder mehrere Lösungen haben können. Dieser Fall tritt zwar bei quadratischen Gleichungen auf, jedoch ist an dieser Stelle die Bezeichnung „Lösungsmenge“ noch nicht zwingend erforderlich, weil es hier ja nur genau eine Lösung, zwei Lösungen oder keine Lösung gibt. Diese Schwierigkeit ist jedoch vermeidbar, wenn man früh Ungleichungen betrachtet.

Beispiel: Gesucht seien (die) Lösungen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -1 < x\leq 3} . Hier wird die Abhängigkeit von der Grundmenge deutlich (auch wenn der Mengenbegriff nicht verfügbar sein sollte), was sich wie folgt notieren lässt:

  • Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L_{\mathbb{N}}=\{0,1,2,3\}} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L_{\mathbb{Z}}=\{-1,0,1,2,3\}} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L_{\mathbb{R}}= {]-1, 3]}} (halboffenes Intervall).

Vollrath empfiehlt zum Verständnis von „Lösungsmenge“ die Betrachtung von Gleichungen, die Terme der sog. Ganzteilfunktion enthalten („Integer-Funktion“, früher auch „Gauß-Klammer“ genannt, heute „ceil“ als „Abrundungsfunktion“, ferner zusätzlich „floor“ als „Aufrundungsfunktion“).[1]
Betrachtet man z. B. die Gleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \lfloor x \rfloor = 2} , so ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L= {[2, 3[}} .

Quellen

  1. Hans-Joachim Vollrath: Didaktik der Algebra. Stuttgart 1974, Klett Studienbücher, S. 92.


Der Beitrag kann wie folgt zitiert werden:
Madipedia (2018): Lösungsmenge. Version vom 3.04.2018. In: dev_madipedia. URL: http://dev.madipedia.de/index.php?title=L%C3%B6sungsmenge&oldid=29809.