Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Zahlenbereiche: Unterschied zwischen den Versionen

Aus dev_madipedia
Zur Navigation springen Zur Suche springen
[unmarkierte Version][unmarkierte Version]
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 10: Zeile 10:
Natürliche Zahlen: ℕ = {1, 2, 3,…}, ℕ0 = ℕ ∪ {0}
Natürliche Zahlen: ℕ = {1, 2, 3,…}, ℕ0 = ℕ ∪ {0}


ℤ = {x | x ∈ ℕ0 v –x ∈ ℕ0}
Ganze Zahlen: Die Menge der ganzen Zahlen enthält die Elemente und alle additiven Inversen
der Menge der natürlichen Zahlen mit Null.
mathematische Schreibweise: ℤ = {x | x ∈ ℕ0 v –x ∈ ℕ0}
 
Rationale Zahlen: Die Erweiterung der Menge der ganzen Zahlen um die Bruchzahlen führt zur Menge der rationalen Zahlen


ℚ = {mit m ∈ ℤ, n ∈ ℕ}
mathematische Schreibweise: ℚ = {mit m ∈ ℤ, n ∈ ℕ}


ǁ= Menge der unendlichen und nichtperiodischen Kommazahlen  
Irrationale Zahlen: ǁ= Menge der unendlichen und nichtperiodischen Kommazahlen  


ℝ = ℚ ∪ ǁ  
Reelle Zahlen: ℝ = ℚ ∪ ǁ  


ℂ = {z | z = x+iy mit x,y ∈ ℝ, x=Re z, y=Im z} ; i = imaginäre Einheit   
Komplexe Zahlen: ℂ = {z | z = x+iy mit x,y ∈ ℝ, x=Re z, y=Im z} ; i = imaginäre Einheit   


=Gesetzmäßigkeiten=
=Gesetzmäßigkeiten=
Zeile 28: Zeile 33:
   
   
In den natürlichen Zahlen gelten folgende Rechengesetze mit m,n,k ∈ ℕ:
In den natürlichen Zahlen gelten folgende Rechengesetze mit m,n,k ∈ ℕ:


Kommutativgesetz für Addition: m + n = n + m
Kommutativgesetz für Addition: m + n = n + m
Zeile 53: Zeile 59:
'''Ganze Zahlen'''
'''Ganze Zahlen'''


Die Menge der ganzen zahlen enthält die Elemente der Menge der natürlichen Zahlen mit  {0} und alle additiven Inversen von ℕ0. In ℤ sind die Verknüpfungen Addition, Subtraktion und Multiplikation abgeschlossen. Für die Division gilt dies nicht.
In den ganzen Zahlen sind die Verknüpfungen Addition, Subtraktion und Multiplikation abgeschlossen. Für die Division gilt dies nicht.


Die Assoziativ- und Kommutativgesetze bezüglich Addition und Multiplikationen, sowie das Distributivgesetz stimmen mit denen der natürlichen Zahlen überein.
Die Assoziativ- und Kommutativgesetze bezüglich Addition und Multiplikation, sowie das Distributivgesetz stimmen mit denen der natürlichen Zahlen überein.




'''Rationale Zahlen'''
'''Rationale Zahlen'''
   
   
Die Erweiterung der Menge der ganzen Zahlen um die Bruchzahlen führt zur Menge der rationalen Zahlen, in der die Division im Allgemeinen gültig ist. Dabei ist die Division durch Null nicht erlaubt.
 
In den rationalen Zahlen gelten die Assoziativ- und Kommutativgesetze bezüglich Addition und Multiplikation, sowie das Distributivgesetz. Dabei ist die Division im Allgemeinen gültig ist, jedoch durch Null nicht definiert.


Für alle x, y, z ∈ ℚ  gilt das Distributivgesetz:  
Für alle x, y, z ∈ ℚ  gilt das Distributivgesetz:  

Version vom 15. Januar 2013, 09:50 Uhr

Definition

Zahlenbereiche sind Mengen von Zahlen, wobei diese durch bestimmte Eigenschaften definiert sind. In jedem Bereich existieren arithmetische Gesetzmäßigkeiten, mit denen man innerhalb der Menge operieren kann.

Arten von Zahlenbereichen und deren Eigenschaften

Datei:Zahlenbereich.png
Übersicht Zahlenbereiche

Natürliche Zahlen: ℕ = {1, 2, 3,…}, ℕ0 = ℕ ∪ {0}

Ganze Zahlen: Die Menge der ganzen Zahlen enthält die Elemente und alle additiven Inversen der Menge der natürlichen Zahlen mit Null.

mathematische Schreibweise: ℤ = {x | x ∈ ℕ0 v –x ∈ ℕ0}

Rationale Zahlen: Die Erweiterung der Menge der ganzen Zahlen um die Bruchzahlen führt zur Menge der rationalen Zahlen

mathematische Schreibweise: ℚ = {mit m ∈ ℤ, n ∈ ℕ}

Irrationale Zahlen: ǁ= Menge der unendlichen und nichtperiodischen Kommazahlen

Reelle Zahlen: ℝ = ℚ ∪ ǁ

Komplexe Zahlen: ℂ = {z | z = x+iy mit x,y ∈ ℝ, x=Re z, y=Im z} ; i = imaginäre Einheit

Gesetzmäßigkeiten

Natürliche Zahlen

Mit je zwei natürlichen Zahlen m und n sind auch die Summe m+n und das Produkt m·n wieder eine natürliche Zahl. Für Differenzen und Quotienten gilt das im Allgemeinen nicht.

In den natürlichen Zahlen gelten folgende Rechengesetze mit m,n,k ∈ ℕ:


Kommutativgesetz für Addition: m + n = n + m

Assoziativgesetz für Addition: (m + n) + k = m + (n + k)

Kommutativgesetz für Multiplikation: m • n = n • m

Assoziativgesetz für Multiplikation: (m • n)• k = m • (n • k)

Distributivgesetz: m • (n + k) = m • n + m • k


Außerdem gelten auch die Peano-Axiome:

(P1) 1∈ ℕ

(P2) Falls n∈ ℕ, dann gibt es einen Nachfolger n‘ in ℕ, n‘ = n+1.

(P3) 1 ist kein Nachfolger.

(P4) Falls n, m ∈ ℕ und n‘= m‘ dann folgt, dass n=m.


Ganze Zahlen

In den ganzen Zahlen sind die Verknüpfungen Addition, Subtraktion und Multiplikation abgeschlossen. Für die Division gilt dies nicht.

Die Assoziativ- und Kommutativgesetze bezüglich Addition und Multiplikation, sowie das Distributivgesetz stimmen mit denen der natürlichen Zahlen überein.


Rationale Zahlen


In den rationalen Zahlen gelten die Assoziativ- und Kommutativgesetze bezüglich Addition und Multiplikation, sowie das Distributivgesetz. Dabei ist die Division im Allgemeinen gültig ist, jedoch durch Null nicht definiert.

Für alle x, y, z ∈ ℚ gilt das Distributivgesetz:

1) x • (y + z) = x • y + x • z

2) x • (y - z) = x • y - x • z


Reelle Zahlen

Im Bereich der reellen Zahlen wird die Menge der rationalen Zahlen um die Menge der irrationalen Zahlen erweitert. Die Menge der reellen Zahlen wird in der Mathematik als Körper bezeichnet. Man bezeichnet eine Menge als Körper, wenn folgende Gesetze erfüllt sind:

1)Kommutativgesetze

2)Assioziativgesetze

3)Distributivbesetze

für alle Elemente a, b, c der Menge der reellen Zahlen.


Komplexe Zahlen

Alle komplexen Zahlen lassen sich als Summe einer reellen Zahl und einem Vielfachen von i darstellen: z = x + i·y, wobei x und y reelle Zahlen sind. x heißt Realteil von z (oder kurz Re(z)) und y Imaginärteil von z (Im(z)). In den komplexen Zahlen gelten folgende Rechengesetze:

1)(x1 + i • y1) + (x2 + i • y2) = (x1 + x2) + i • (y1 + y2)

2)(x1 + i • y1) - (x2 + i • y2) = (x1 - x2) + i • (y1 - y2)

3)(x1 + i • y1) • (x2 + i • y2) = (x1x2 - y1y2) + i • (x1y2 + x2y1)

4)(x1 + i • y1) / (x2 + i • y2) = (x1x2 + y1y2) / (x2²+ y2²) + i • (x2y1 - x1y2) / (x2²+ y2²)

5)Division nur im Falle von x2 + i • y2 ≠ 0

Zahlenbereiche im Mathematikunterricht

Systematischer Aufbau

Vernetzung zu anderen Themen

Literatur