Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Frank Schumann: Unterschied zwischen den Versionen

Aus dev_madipedia
Zur Navigation springen Zur Suche springen
[gesichtete Version][unmarkierte Version]
Zeile 88: Zeile 88:
===2010===
===2010===
* [[Frank Schumann]]: '''Individuelles Fördern mit Köpfchen - Heterogenität produktiv nutzen'''. Behandelt werden Fragen und Themen wie: "Was sind Kompetenzen?",  "Kompetenzorientierte Diagnostik im Mathematikunterricht.", "Was sind  Kompetenzraster?", "Wie können ausgewählte Kompetenzen aus dem überfachlichen  Bereich in das Kompetenzraster implementiert werden?", "Die strategischen  Kompetenzbereiche des Mathematikunterrichts und ihre Anforderungsbereiche.",  "Selbstständiges Lernen durch Lernumgebungen organisieren.", "Fragen des Autors  zum Umgang mit Kompetenzrastern." u.v.a.m.<br>In: Homepage des Math-College - Privates Institut für Schulmathematik, Wertheim 2010.<br>PDF Inhaltsverzeichnis, Einleitung, Artikel (ca. 2,3 MB): http://www.fschumann.com/Publikationen/FrankSchumann_Individuelles_Foerdern_mit_Koepfchen_Heterogenitaet_produktiv_nutzen_Kompetenzraster.pdf<br>ZIP Zusatzdateien für GeoGebra (ca. 0,3 MB): http://www.fschumann.com/data/FrankSchumann_Zusatzdateien_Geogebra_Individuelles_Fördern_mit_Köpfchen_Heterogenität_produktiv_nutzen.zip
* [[Frank Schumann]]: '''Individuelles Fördern mit Köpfchen - Heterogenität produktiv nutzen'''. Behandelt werden Fragen und Themen wie: "Was sind Kompetenzen?",  "Kompetenzorientierte Diagnostik im Mathematikunterricht.", "Was sind  Kompetenzraster?", "Wie können ausgewählte Kompetenzen aus dem überfachlichen  Bereich in das Kompetenzraster implementiert werden?", "Die strategischen  Kompetenzbereiche des Mathematikunterrichts und ihre Anforderungsbereiche.",  "Selbstständiges Lernen durch Lernumgebungen organisieren.", "Fragen des Autors  zum Umgang mit Kompetenzrastern." u.v.a.m.<br>In: Homepage des Math-College - Privates Institut für Schulmathematik, Wertheim 2010.<br>PDF Inhaltsverzeichnis, Einleitung, Artikel (ca. 2,3 MB): http://www.fschumann.com/Publikationen/FrankSchumann_Individuelles_Foerdern_mit_Koepfchen_Heterogenitaet_produktiv_nutzen_Kompetenzraster.pdf<br>ZIP Zusatzdateien für GeoGebra (ca. 0,3 MB): http://www.fschumann.com/data/FrankSchumann_Zusatzdateien_Geogebra_Individuelles_Fördern_mit_Köpfchen_Heterogenität_produktiv_nutzen.zip
== Lernvideos ==
<!-- Liste der veröffentlichen Literatur. Untergliederung möglich. Personen und Hochschulen bitte mit [[…]] kennzeichnen
Beispiel:                                                                                                           
* [[Person X]] Publikation 1 ...
-->


===2013===
===2013===

Version vom 7. September 2013, 20:29 Uhr

<img src="https://madipedia.de/images/Madipedia-Logo.png" alt="Madipedia" height="30">Publikationen

Diplomlehrer Frank Schumann.* 25.09.1962.
Referent für Unterrichtsentwicklung Mathematik Sekundarstufen. Landesinstitut für Schulentwicklung Stuttgart.
Eigene Homepage: http://www.fschumann.com und http://www.in-mathe-einfach-besser.de.
E-Mail
{{

 #loop: i
 | 0                     
 | 1 
 |   

}}


Kurzvita

  • 1984 Diplomarbeit zur Erlangung des akademischen Grades Diplomlehrer (Fachgebiet Hochschulmathematik) Thema: Schwarzsche Ableitungen und trigonometrische Reihen (Funktionalanalysis) Hinterlegung: Friedrich-Schiller-Universität zu Jena, Ergebnis: Gut.
  • 1984 - 1990 Lehrer an verschiedenen POS und EOS in Saalfeld, Fächer Mathematik und Physik.
  • 1990 - 1996 Lehrer am Beruflichen Gymnasium (SbbS) Rudolstadt-Schwarza, Fächer Mathematik und Physik.
  • 1991 - 1993 Schulleiter des Beruflichen Gymnasiums (SbbS) Rudolstadt-Schwarza.
  • 1992 - 1994 Mitglied einer Arbeitsgruppe aus SchulleiterInnen zur Entwicklung von Verordnungen für Berufliches Gymnasium und Fachoberschule (Thüringer Ministerium für Bildung, Wissenschaft und Kultur).
  • 1992 - 1995 Vorsitzender der Lehrplankommission Physik für Berufliches Gymnasium und Fachoberschule (Thüringer Ministerium für Bildung, Wissenschaft und Kultur, Thüringer Institut für Lehrerfortbildung, Lehrplanentwicklung und Medien (Thillm)).
  • 1996 - 2005 Mitbegründer und Leiter des Math-College - Privates Institut für Schulmathematik in Hannover und Sangerhausen (weiteres Gründungsmitglied: Jens Carl).
  • 1999 Mitbegründer des Schumanns Verlagshaus - Fachverlag für Schulmathematik in Hannover (weiteres Gründungsmitglied: Jens Carl).
  • 2005 - 2010 Lehrer am Dietrich-Bonhoeffer-Gymnasium in Wertheim, Fächer Mathematik und Physik, Fachbeauftragter.
  • 2010 - 2011 Lehrer am Geschwister-Scholl-Gymnasium in Stuttgart, Fächer Mathematik und Physik.
  • 2010 - dato Referent für Unterrichtsentwicklung Mathematik Sekundarstufen am Landesinstitut für Schulentwicklung Stuttgart.
  • 2011 - dato Lehrer am Eschbach-Gymnasium in Stuttgart, Fächer Mathematik und Physik.

Veröffentlichungen

1998

  • Frank Schumann: Funktionales Argumentieren im Algebraunterricht der unteren Klassen am Gymnasium, Zeitschrift: Mathematik in der Schule Nr. 1/1998 Seiten 48-55, In: Pädagogischer Zeitschriftenverlag Berlin.
  • Frank Schumann: 14 Zusatzdateien für die Sekundarstufe I mit Cabri Géomètre II für Windows – 3,5" Diskette, In: Math-College Hannover 1998.
  • Frank Schumann & Hartmut Henning: Zuordnungen nach Programm - Praktische Unterrichtshilfe für einen computerorientierten Mathematikunterricht in der Sekundarstufe I mit Derive für Windows und Cabri Géomètre II für Windows (Lehrerausgabe), Reihe: Math-College-Dokumente, In: Math-College Hannover 1998.

1999

  • Frank Schumann: Bruchrechnen lernen mit dem Computer – macht das Sinn?, Zeitschrift: Mathe-Innovativ Nr.1/1999 Seiten 1-7, In: Schumanns Verlagshaus Hannover.
  • Frank Schumann & Hartmut Henning: Zuordnung nach Programm - Die Ursprungsgerade und ihre Anwendungen, Praktische Unterrichtshilfe für einen computerorientierten Mathematikunterricht in der Sekundarstufe I mit Derive für Windows und Cabri Géomètre II für Windows (Schülerausgabe & Lehrerausgabe als neuüberarbeitete Auflage), Reihe: Math-College-Dokumente, In: Schumanns Verlagshaus Hannover 1999.
  • Hartmut Henning & Frank Schumann: Zuordnung nach Programm – ein didaktisches Modell im modernen Mathematikunterricht am Beispiel der Bestimmung der Sekantengleichung (Teil 1), Zeitschrift: Mathe-Innovativ Nr. 2/1999 Seiten 2-11, In: Schumanns Verlagshaus Hannover.
  • Hartmut Henning & Frank Schumann: Zuordnung nach Programm – ein didaktisches Modell im modernen Mathematikunterricht am Beispiel der Bestimmung der Sekantengleichung (Teil 2), Zeitschrift: Mathe-Innovativ Nr. 3/1999 Seiten 2-8, In: Schumanns Verlagshaus Hannover.
  • Frank Schumann: Eine altbekannte Extremwertaufgabe im computerunterstützten Unterricht, Klasse 11, Zeitschrift: Mathe-Innovativ Nr.4/1999 Seiten 2-13, In: Schumanns Verlagshaus Hannover.
  • Frank Schumann & Hartmut Henning: Grundkonstruktionen, Geometrie mit Cabri Géomètre II für Windows (Arbeitsbuch & CD-ROM mit elektronischen Worksheets und Kopiervorlagen für die Klassen 5 bis 9 an Realschulen und Gymnasien), Reihe: Math-College-Dokumente, In: Schumanns Verlagshaus Hannover 1999.

2000

  • Frank Schumann: Wie viel Bruchrechnung brauchen die SchülerInnen im 21. Jahrhundert? Eine CAS- und DGS-orientierte Einführung in die Bruchrechnung (mit Derive für Windows und Cabri Géomètre II für Windows), Zeitschrift: Mathe-Innovativ Nr.1/2000 Seiten 2-15, In: Schumanns Verlagshaus Hannover.
  • Frank Schumann: Wie finde ich bloß die Gleichung? – Heuristische Wege zum Lösen einfacher Text- und Sachaufgaben unter Einbeziehung von Computeralgebra (Lehrerhandreichung mit vielen Beispielen), Reihe: Math-College-Dokumente, In: Schumanns Verlagshaus Hannover 2000.
    PDF Einleitung, Inhaltsverzeichnis, Buchteil (ca. 1,0 MB): http://www.fschumann.com/Publikationen/FrankSchumann_Wie_finde_ich_bloss_die_Gleichung.pdf
  • Hartmut Henning & Frank Schumann: Einführung in die elementare Bedienung des Algebra FX 2.0 - Viele Beispiele aus Schule und Studium ausführlich dargestellt (Einführung in CAS-Rechner), In: Casio Europe GmbH Norderstedt 2000.

2001

2004

2005

  • Frank Schumann: Das Einmaleins des TI-89 & TI-89 Titanium (Ein Strategiebuch für TI-CAS-Rechner), Reihe: Ein Lehrbuch des Math-College, In: Schumanns Verlagshaus Sangerhausen 2005.
  • Frank Schumann: Lösen goniometrischer Gleichungen (Kopiervorlagen / Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium von Texas Instruments), Zeitschrift: In Mathe einfach besser... Nr. 1/2005 Seiten 10-14, In: Schumanns Verlagshaus Sangerhausen.
  • Frank Schumann: Regeln für die Addition rationaler Zahlen (Kopiervorlagen für den TI-30X II S von Texas Instruments), Zeitschrift: In Mathe einfach besser... Nr. 1/2005 Seiten 15-18, In: Schumanns Verlagshaus Sangerhausen.
  • Frank Schumann: Symbolisches und approximatives Lösen von Gleichungen Teil 1 - Eine harte Nuss von Gleichung, Zeitschrift: In Mathe einfach besser... Nr. 2/2005 Seiten 2-10, In: Schumanns Verlagshaus Sangerhausen.
  • Frank Schumann & Roland Westphal: Das Skalarprodukt von Vektoren (Kopiervorlagen / Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium von Texas Instruments, Zeitschrift: Mathe einfach besser... Nr. 2/2005 Seiten 11-15, In: Schumanns Verlagshaus Sangerhausen.

2006

  • Frank Schumann: Symbolisches und approximatives Lösen von Gleichungen Teil 2 - Wie erhalte ich Näherungslösungen der Gleichung x³-x+1=0?, Zeitschrift: In Mathe einfach besser... Nr. 1/2006 Seiten 2-8, In: Schumanns Verlagshaus Wertheim.
  • Frank Schumann: Algebraische Eigenschaften des Skalarprodukts (Kopiervorlage / Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium von Texas Instruments), Zeitschrift: In Mathe einfach besser... Nr. 1/2006 Seiten 16-24, In: Schumanns Verlagshaus Wertheim.
  • Frank Schumann: Reelle Lösungen einer Gleichung dritten Grades, Zeitschrift: In Mathe einfach besser... Nr. 2/2006 Seiten 2-6, In: Schumanns Verlagshaus Wertheim.
  • Frank Schumann: Das Skalarprodukt und die Winkelberechnungen, Zeitschrift: In Mathe einfach besser... Nr. 2/2006 Seiten 7-12, In: Schumanns Verlagshaus Wertheim.
  • Frank Schumann: Das Operatormodell in Tafelbildern, Zeitschrift: In Mathe einfach besser... Nr. 2/2006 Seiten: 13-21, In: Schumanns Verlagshaus Wertheim.
  • Frank Schumann: Prozent- und Zinsrechnung mit dem TI-30 X II - Übungsmaterial für SchülerInnen am Gymnasium (G8)im Selbstlernverfahren (mit Lösungen), Reihe: Ein Lehrbuch des Math-College, In: Schumanns Verlagshaus Wertheim 2006.
  • Frank Schumann: Den Kompetenzerwerb individualisieren - Entdecken und Verstehen, In: Homepage des Math-College Wertheim 2006.

2007

  • Frank Schumann: Niveaugestufte Aufgaben und Lernumgebungen, In: Homepage des Math-College Wertheim 2007.

2010

Lernvideos

2013

  • Frank Schumann: 8 Lernvideos zum Thema Winkelfunktionen:
    Sinus und Kosinus am Einheitskreis. Am Einheitskreis wird der Sinus und Kosinus für Winkel zwischen 0° und 360° definiert. Es werden Animationen für verschiedene Winkel sichtbar. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    Das Bogenmaß - eine reelle Zahl. Das Bogenmaß ist ein Alternative für das Gradmaß. Es wird der Zusammenhang zwischen Gradmaß und Bogenmaß am Einheitskreis illustriert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    Die Sinusfunktion mit y=sin(x). Aus dem Einheitskreis wird sukzessive der Graph der Sinusfunktion gewonnen. Der Definitionsbereich ist das Grundintervall von 0 bis 2π. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    Die Sinusfunktion und die Kosinusfunktion sind periodisch. Am Beispiel der Sinus- und Kosinusfunktion wird in Geogebra der Begriff der Periode einer Funktion erläutert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    Die Kosinusfunktion mit y=cos(x). Aus dem Einheitskreis wird sukzessive der Graph der Kosinusfunktion gewonnen. Der Definitionsbereich ist das Grundintervall von 0 bis 2π. Außerdem wird gezeigt, wie der Kosinusgraph aus der Verschiebung des Sinusgraphen entlang der X-Ache hervorgeht.Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    5 Basisübungen zu Sinus und Kosinus am Einheitskreis. Teilkompetenz 1: Ich kann ausgewählte Funktionswerte für Sinus und Kosinus nennen. Teilkompetenz 2: Ich kann Winkel vom Gradmaß in das Bogenmaß umrechnen und umgekehrt. Teilkompetenz 3: Ich kann jeden Funktionswert aus der obigen Tabelle am Einheitskreis begründen. Teilkompetenz 4: Ich kann ausgewählte Funktionswerte ohne Taschenrechner miteinander vergleichen. Teilkompetenz 5: Ich kann einfache goniometrische Gleichungen lösen. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    Ableitung der Sinusfunktion und Kosinusfunktion. Es werden die Regeln zum Ableiten der Sinus- und Kosinusfunktionen vorgestellt und durch graphisches Ableiten in Geogebra plausibel gemacht. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    Amplitude und Periode - dein Projekt. Vorgestellt wird ein Anleitungsvideo für eine kleine Projektaufgabe zum Thema Parameterdarstellung anhand der Parameter a und b der Funktion y=a*sin(b*x). Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Winkelfunktionen.html
  • Frank Schumann: 9 Lernvideos zum Thema Binomialverteilung:
    Grundbegriffe der Wahrscheinlichkeitsrechnung - eine Zusammenfassung. Es werden verschiedene Grundbegriffe der Wahrscheinlichkeitsrechnung, wie z.B. Zufallsversuch, Wahrscheinlichkeit und Erwartungswert einer Zufallsgröße in kompakter Form definiert und an einigen einfachen Beispielen illustriert.
    Varianz und Standardabweichung. An verschiedenen Wahrscheinlichkeitsverteilungen werden die Begriffe Varianz und Standardabweichung erläutert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    Minilotto "3 aus 7". Es wird ein kombinatorisches Problem mit dem Modell "Ziehen ohne Zurücklegen" am Beispiel "Minilotto 3 aus 7" erörtert. In diesem Zusammenhang wird exemplarisch der Binomialkoeffizient "7 über 3" in seiner Bedeutung erläutert.
    Der Binominalkoeffizient "n über k". Es wird der Binomialkoeffizient explizit und rekursiv definiert und der Zusammenhang zu Binomen hergestellt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    Das Bernoulli-Experiment. Es wird in des Modell des Bernoulli-Experimentes eingeführt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    Bernoulli-Ketten der Länge n=2. Es wird exemplarisch der Begriff der Bernoulli-Kette der Länge n=2 eingeführt. Als Demonstrationsbeispiel dient ein einfaches Würfelspiel. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    Bernoulli-Ketten und die Rekursion von n=3 auf n=2. Es wird die Technik der Rekursion auf Bernoulli-Ketten der Länge n=3 angewendet, um Wahrscheinlichkeiten für verschiedene Trefferzahlen zu definieren.
    Bernoulli-Formeln und Anwendungen. Das Modell der Bernoulliketten mit der Länge n, der Trefferzahl k und der Erfolgswahrscheinlichkeit p wird durch die Bernoulligleichung beschrieben und in einem Geogebra-Arbeitsblatt simuliert. Im Weiteren wird der Begriff der binomialverteilten Zufallsgröße eingeführt und der Wahrscheinlichkeitsrechner in Geogebra am Beispiel der Binomialverteilungen vorgestellt.
    Eigenschaften der Binomialverteilung - dein Projekt. Vorgestellt wird ein Anleitungsvideo für eine kleine Projektaufgabe zum Thema Eigenschaften der Binomialverteilung mit den Parametern Länge n und Trefferwahrscheinlichkeit p. Außerdem wird gezeigt, wie man den Befehl Binomial benutzt und die Online-Hilfe eines Geogebra-Wiki zu Rate ziehen kann.Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
    Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Stochastik.html

Herausgeber

1998

  • Josyph Klejmann (Software-Programmierer) & Frank Schumann (Hrsg.): Stack-Kalkulator 2.0 - Ein interaktives Rechenprogramm mit zahlreichen Darstellungs-, Animations- und Simulationsmöglichkeiten, 3,5" Diskette, In: Math-College Hannover 1998.

1999

2002

  • Hartmut Henning (Autor) & Frank Schumann (Hrsg.): Erfolgreicher Start mit der TI-83-Serie - Teil 1 - Eine beispielorientierte Einführung in die Bedienung der TI-Grafikrechner-Familie), Reihe: Mathe-Innovativ, In: Schumanns Verlagshaus Sangerhausen 2002.
  • Hartmut Henning (Autor) & Frank Schumann (Hrsg.): Erfolgreicher Start mit der TI-83-Serie - Teil 2 - Eine beispielorientierte Einführung in die Bedienung der TI-Grafikrechner-Familie), Reihe: Mathe-Innovativ, In: Schumanns Verlagshaus Sangerhausen 2002.

2004

  • Hartmut Henning (Autor) & Frank Schumann (Hrsg.): Das TI-84 Plus Buch - Eine beispielorientierte Einführung in die Bedienung der TI-Grafikrechner-Familie), Reihe: Ein Lehrbuch des Math-College, In: Schumanns Verlagshaus Sangerhausen 2004.

2005

  • Ingeborg Löffler (Autorin) & Frank Schumann (Hrsg.): Informationen aus Sätzen verstehen lernen - Mein Aussagen Teil 1, Zeitschrift: In Mathe einfach besser... Nr. 1/2005 Seiten 2-10, In: Schumanns Verlagshaus Sangerhausen 2005.
  • Ingeborg Löffler (Autorin) & Frank Schumann (Hrsg.): Informationen aus Sätzen verstehen lernen - Mein Aussagen Teil 2, Zeitschrift: In Mathe einfach besser... Nr. 2/2005 Seiten 15-23, In: Schumanns Verlagshaus Sangerhausen 2005.

2006

  • Ingeborg Löffler (Autorin) & Frank Schumann (Hrsg.): Informationen aus Sätzen verstehen lernen - Mein Aussagen Teil 3, Zeitschrift: In Mathe einfach besser... Nr. 1/2006 Seiten 9-15, In: Schumanns Verlagshaus Wertheim 2006.

Projekte

  • Arbeitskreis Mathematik & Informatik (GDM) in Wolfenbüttel (1997-2000).
  • Landesarbeitsgemeinschaft Schule Baden-Württemberg (März 2011- März 2012).
  • "Umgedrehter Unterricht" (flip teaching, flipped classroom oder inverted teaching) Bereitstellung kostenfreier Mathematik-Lernvideos zur individuellen Förderung und zum selbstständigen Arbeiten zu aktuellen Themen meines Unterrichts auf http://www.in-mathe-einfach-besser.de (März 2013 - dato).

Arbeitsgebiete

  • Kompetenzratser
  • Kompetenzorientierter Mathematikunterricht
  • Computeralgebra (CAS)
  • Dynamische Geometrie (DGS)
  • Grafikfähige Taschenrechner
  • Schulentwicklung
  • Unterrichtsentwicklung

Vernetzung