Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
Relation: Unterschied zwischen den Versionen
[gesichtete Version] | [gesichtete Version] |
KKeine Bearbeitungszusammenfassung |
K (→Grundlegende Definitionen: Syntaktische Korrektur der Tabellendarstellung.) |
||
Zeile 10: | Zeile 10: | ||
! Definitionen !! Anmerkungen | ! Definitionen !! Anmerkungen | ||
|- | |- | ||
| ''Voraussetzung:'' Es seien {{sp}} <math>A,B,R</math> {{sp}} Mengen und <math>n\in {{\mathbb{N}}^{*}}\text{ }\!\!\backslash\!\!\text{ }\{1\}</math> (also <math>n>1</math>). || | | ''Voraussetzung:'' Es seien {{sp}} <math>A,B,R</math> {{sp}} Mengen und {{sp}} <math>n\in {{\mathbb{N}}^{*}}\text{ }\!\!\backslash\!\!\text{ }\{1\}</math> ({{sp}} also <math>n>1</math>). || | ||
|- | |- | ||
| Für beliebige Objekte {{sp}} <math>a, b</math> {{sp}} gilt: | | Für beliebige Objekte {{sp}} <math>a, b</math> {{sp}} gilt: <math>(a,b):=\{\{a\},\{a,b\}\}</math> || <math>(a,b)</math> {{sp}} heißt „'''geordnetes Paar'''“. | ||
Es lässt sich dann mit Bezug auf die Definition der Gleichheit von zwei Mengen beweisen, dass <math>(a,b)=(b,a)\Leftrightarrow a=b</math> {{sp}} gilt.<br /> | |||
Es lässt sich dann mit Bezug auf die Definition der Gleichheit von zwei Mengen beweisen, dass <math>(a,b)=(b,a)\Leftrightarrow a=b</math> gilt.<br /> | |||
<math>(a,b)</math> {{sp}} lässt sich rekursiv zum geordneten <math>n</math>-Tupel <math>({{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n-1}},{{a}_{n}})</math> verallgemeinern.<br />Spezielle Namen sind für <math>n=3</math> „'''Tripel'''“ und für <math>n=4</math> „'''Quadrupel'''“. | <math>(a,b)</math> {{sp}} lässt sich rekursiv zum geordneten <math>n</math>-Tupel <math>({{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n-1}},{{a}_{n}})</math> verallgemeinern.<br />Spezielle Namen sind für <math>n=3</math> „'''Tripel'''“ und für <math>n=4</math> „'''Quadrupel'''“. | ||
|- | |- | ||
| | | <math>A\times B:=\{(a,b)|a\in A\wedge b\in B\}</math> || <math>A\times B</math> {{sp}} heißt „'''Produktmenge'''“ oder „'''kartesisches Produkt'''“ (von <math>A</math> und <math>B</math>).<br /> | ||
<math>A\times B</math> {{sp}} lässt sich rekursiv zu <math>{{A}_{1}}\times \ldots \times {{A}_{n-1}}\times {{A}_{n}}</math> verallgemeinern. | <math>A\times B</math> {{sp}} lässt sich rekursiv zu <math>{{A}_{1}}\times \ldots \times {{A}_{n-1}}\times {{A}_{n}}</math> verallgemeinern. | ||
|- | |- |
Aktuelle Version vom 2. April 2018, 16:47 Uhr
Übersicht [1]
Der Terminus „Relation“ wird in der heutigen Mathematik im Sinne von „Beziehung“ (und damit als „Zuordnung“) verwendet. [2] Im einfachsten Fall wird es im mathematischen Kontext darum gehen, „Beziehungen“ zwischen zwei Mengen (genauer: zwischen den Elementen von zwei Mengen, etwa und genannt) zu beschreiben, also darum, ob und wie zu „in Beziehung steht“, falls und gilt. Eine solche Relation kann z. B. durch eine Gleichung wie oder eine Ungleichung wie beschrieben werden.
Sofort ist ersichtlich, dass eine konkrete, etwa mit bezeichnete Relation dann zutreffend durch die Angabe derjenigen geordneten Paare aus der „Produktmenge“ gekennzeichnet werden kann, die hier „in Beziehung stehen“. Das führt dazu, jede Teilmenge einer solchen Produktmenge als eine „Relation zwischen und “ – oder genauer: als eine „Relation von nach “ – aufzufassen.
Da eine solche „Relation“ als Menge von geordneten Paaren aber unverändert bleibt, wenn man in anstelle von und beliebige Obermengen wählt, liegt es nahe, bereits diese Menge von geordneten Paaren als „Relation“ zu bezeichnen, also ohne die Angabe einer bestimmten Produktmenge als Bezugsmenge. Beide Wege sind sinnvoll und jeweils situativ zu wählen – und vor allem situativ zu beachten und unterscheiden!
Definitionen
Grundlegende Definitionen
Der formalmathematischen Definition von „Relation“ liegt das „geordnete Paar“ zugrunde, etwa mit bezeichnet, wobei es auf die Reihenfolge der beiden „Elemente“ dieses Paares ankommt (im Gegensatz zur mit bezeichneten Menge). In diesem Sinne kann man die Darstellung als unmittelbar einsichtig im Sinne eines undefinierten Grundbegriffs verwenden. Immerhin gelang es dem polnischen Mathematiker Kazimierz Kuratowski) 1921, das „geordnete Paar“ mengentheoretisch elegant zu definieren. Dieser formale Aufbau wird kurz angedeutet:
Definitionen | Anmerkungen |
---|---|
Voraussetzung: Es seien Mengen und ( also ). | |
Für beliebige Objekte gilt: | heißt „geordnetes Paar“.
Es lässt sich dann mit Bezug auf die Definition der Gleichheit von zwei Mengen beweisen, dass gilt. |
heißt „Produktmenge“ oder „kartesisches Produkt“ (von und ). lässt sich rekursiv zu verallgemeinern. | |
ist genau dann eine -stellige Relation, wenn aus geordneten -Tupeln besteht. | 2-stellige Relationen heißen auch „binäre Relationen“, sie bestehen aus geordneten Paaren. |
ist genau dann eine Relation von nach , wenn gilt. | Die geometrische Beziehung „Punkt liegt auf Gerade“ ist eine Relation von einer Punktmenge nach einer Geradenmenge. |
ist genau dann eine Relation in , wenn gilt. | Die „Größer-als-Beziehung“ ist eine Relation in einer Menge von Zahlen. |
Für binäre Relationen wird folgende Schreibweise vereinbart::
Spezielle Relationseigenschaften und spezielle Relationen [3]
Definitionen | Anmerkungen |
---|---|
Voraussetzung: seien Mengen, und . | Die nachfolgenden Erläuterungen deuten als einen „Pfeil von nach “. |
ist symmetrisch Es gilt für alle wenn , dann . | Wenn eine Verbindung, dann in beiden Richtungen: also keine Einbahnstraßen (ungerichteter Graph). |
ist asymmetrisch Es gilt für alle wenn , dann nicht . | Wenn eine Verbindung, dann nur in einer Richtung: nirgends Schleifen, also höchstens Einbahnstraßen (gerichteter Graph). |
ist identitiv Es gilt für alle wenn und , dann . | Verbindung zwischen verschiedenen Punkten nur in einer Richtung: Schleifen möglich. [4] |
ist transitiv Es gilt für alle wenn und , dann . | Wenn eine mittelbare Verbindung, dann auch eine unmittelbare (also direkte und damit kürzeste): Existenz von Überbrückungspfeilen. |
ist reflexiv in Es gilt für alle . | Überall Schleifen. |
ist irreflexiv in Es gilt für alle nicht . | Nirgends Schleifen. |
ist konnex in Es gilt für alle oder . | Zwischen je zwei Punkten mindestens eine Verbindung: überall Schleifen. [5] |
- Zur Beachtung: Die letzten drei Eigenschaften enthalten jeweils den wesentlichen Zusatz „in “, was bedeutet, dass eine Relation z. B. nicht per se „reflexiv“ sein kann, sondern dass dazu der Bezug auf eine konkrete Menge unverzichtbar ist. Und genau bei den ersten vier Eigenschaften ist dieser Zusatz nicht erforderlich.
- Eine Relation in einer Menge ist genau dann eine Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist.
- Eine Relation in einer Menge ist genau dann eine Halbordnungsrelation, wenn sie reflexiv, identitiv und transitiv ist.
- Eine Relation in einer Menge ist genau dann eine Totalordnungsrelation, wenn sie identitiv, transitiv und konnex ist.
- Eine Relation in einer Menge ist genau dann eine Striktordnungsrelation, wenn sie asymmetrisch und transitiv ist.
Literatur
- Hischer, Horst [2012]: Grundlegende Begriffe der Mathematik: Entstehung und Entwicklung. Struktur – Funktion – Zahl. Wiesbaden: Springer Spektrum.
Anmerkungen
- ↑ Die gesamte Darstellung basiert auf [Hischer 2012, Kapitel 4 und 5].
- ↑ Diese Deutung von „Relation“ als „Beziehung“ geht auf die in der Logik (als einer philosophischen Disziplin) übliche Bedeutung zurück, während das lateinische „relatio“ zunächst nur „Bericht(erstattung)“ oder „Vortrag“ bedeutete.
- ↑ Veranschaulichungen und weitere Erläuterungen dazu in [Hischer 2012, 181 ff.]
- ↑ Statt „identitiv“ ist auch die Bezeichnung „antisymmetrisch“ üblich, was aber nicht mit „asymmetrisch“ verwechselt werden darf.
- ↑ Statt „konnex“ sind auch die Bezeichnungen „total“ oder „vergleichbar“ üblich. Mit „konnex“ wird das lateinische „connecto“ für „Verbindung“ (hier also als „verbindend“) erfasst.
Der Beitrag kann wie folgt zitiert werden: Horst Hischer (2018): Relation. Version vom 2.04.2018. In: dev_madipedia. URL: http://dev.madipedia.de/index.php?title=Relation&oldid=29797. |