Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Lineare Funktionen: Unterschied zwischen den Versionen

Aus dev_madipedia
Zur Navigation springen Zur Suche springen
[unmarkierte Version][gesichtete Version]
Keine Bearbeitungszusammenfassung
 
(11 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
Die lineare Funktion gehört zu den ersten elementaren Funktionen, die die Schüler/innen kennenlernen. Sie kann auf unterschiedlichste Weise definiert werden:
== Übersicht ==
[[Datei:Lineare_Funktionen_Steigung.png|thumb|right|400px|Lineare Funktionen: Visualisierung von „Steigung“>]]
Die meist so genannten „linearen Funktionen“ gehören zu den ersten sog. „elementaren Funktionen“, die im Mathematikunterricht auftreten. <br />
Für den schulischen Kontext gilt folgende umfassende<br />
''Definition:''
: Es sei <math>f\colon \mathbb{R} \rightarrow \mathbb{R} </math> mit <math>m\in \mathbb{R}</math>, <math>b\in \mathbb{R}</math> und <math>f(x)=m·x+b</math> für alle <math>x\in \mathbb{R}</math>.<br />
: <math>f</math> ist dann eine '''lineare Funktion'''.
Das ''[[Schaubild_einer_Funktion|Schaubild]]'' des Funktionsgraphen von <math>f</math> ist eine '''Gerade''' mit der '''Steigung''' <math>m</math>. Stellt man diese Gerade in einem kartesischen Koordinatensystem mit der <math>x</math>-Achse als Rechtsachse und der <math>y</math>-Achse als Hochachse dar, so ist <math>b</math> der sog. '''<math>y</math>-Achsenabschnitt''', die Gerade verläuft also durch den Punkt mit den Koordinaten <math>(0;b)</math>.


* Eine lineare Funktion ist eine Funktion <math>f\colon \mathbb{R} \rightarrow \mathbb{R} </math>, die durch folgende Funktionsgleichung definiert ist: <math>f(x)=y=mx+n</math>. Die Variablen <math>m</math> und <math>n</math> sind aus dem Bereich der reellen Zahlen, wobei m den Anstieg und n den Achsenabschnitt (Schnittpunkt mit der Ordinatenachse) beschreibt.
== Ergänzungen und Anmerkungen ==
 
* Im Mathematikunterricht tauchen lineare Funktionen anfangs noch nicht von <math>\mathbb{R}</math> in <math>\mathbb{R}</math> auf, sondern allenfalls von <math>\mathbb{Q}</math> in <math>\mathbb{Q}</math> oder sogar nur von Teilmengen davon.
* Eine lineare Funktion ist eine Funktion, deren Graph eine Gerade ist, die die Ordinatenachse in nur einem Punkt schneidet.
* Es sind „Steigung“ und „Anstieg“ zu unterscheiden: Der Anstieg ist die (absolute) „Höhendifferenz“ zwischen zwei Punkten auf einer Geraden, die Steigung ist hingegen die „relative Höhendifferenz“ zwischen zwei Punkten einer Geraden, also der Quotient aus der absoluten Höhendifferenz und der absoluten "Entfernungsdifferenz".
 
* Die Steigung kann man – wie bei Verkehrsschildern üblich – auch in Prozent angeben.
* Eine lineare Funktion ist eine Funktion, deren Anstieg (Steigung, Zuwachsrate) konstant ist.
* Die (übliche) Bezeichnung „lineare Funktion“ ist für die hier betrachteten Funktionen eigentlich nicht korrekt: Geht man nämlich davon aus, dass „Abbildung“ und „Funktion“ Synonyme sind, so wird das Problem sofort klar, denn für eine „lineare Abbildung“ gilt <math>f(x)=m·x</math>, also ist dann <math>b=0</math>. Funktionen vom Typ <math>f(x)=m·x+b</math> müssten daher eigentlich ''„affine Funktionen“'' genannt werden, kompromissweise ist auch ''„affin-lineare Funktionen“'' denkbar.  
 
* Die im Mathematikunterricht anzutreffende Bezeichnung „proportionale Funktion“ ist vom Typ <math>f(x)=m·x</math>, also im Sinne der (Linearen) Algebra eine „lineare Abbildung“.
Typischer Weise wird die lineare Funktion in der 8. Klasse nach den proportionalen Funktionen der Form <math>f(x)=y=mx</math> eingeführt.
 
 
==Aufgabenbeispiele==
 
===Einführungsbeispiele===
 
Es gibt verschiedene Möglichkeiten, wie man die linearen Funktionen einführen kann.
 
=====1. Proportionale Zuordnung <ref>Lehrbuch: Mathematik 8. Klasse, Pädagogischer Verlag Schwann-Bagel GmbH, Düsseldorf, 1986, Seite 113-114</ref>=====
 
Die wohl am meisten gewählte Form ist die der proportionalen Zuordnung, denn diese ist den Schülern bereits bekannt. Das Vorwissen der Schüler wird zur 
Einleitung verwendet, wodurch der neue Themenkomplex nicht komplett neu erscheint und bereits erlerntes Wissen mit angewendet und gleichzeitig widerholt
werden kann. Ein solches Beispiel könnte sein:
 
Eine Schraubenfeder wird durch Anhängen von Gewichtsstücken von je 0,5N gedreht. Es wird nun die Verlängerung gemessen, die die Feder durch die betreffende Belastung erfährt.
 
{| class="wikitable" border="1"  
|-
!Belastung(in N)|| 0,5 || 1,0 || 1,5 || 2,0 || 2,5 || 3,0
|-
!Verlängerung (in cm)|| 4,6 || 9,1 || 13,7 || 18,2 || 22,8 || 27,4
|}
 
Er ergibt sich folgendes Bild:
 
[[Datei:Diagramm.png]]
 
 
Oder man berechnet den Quotienten der einander zugeordneten Maßzahlen. Es gilt:
<math> 4,6:0,5=9,2; 9,1:1,0=9,1; … </math>
 
Erfasst man die jeweilige Belastung durch die Variable x und die zugehörige Verlängerung durch die Variable y, so gilt: <math> y:x = 9,1 \rightarrow f(x)=9,1x </math>
 
Betrachtet man jedoch die Gesamtlänge der Feder anstatt der Verlängerung. So ergibt sich folgendes. Hierbeit muss beachtet werden, dass die Feder ohne Belastung 7,4 cm lang ist.
 
{| class="wikitable" border="2"
|-
!Belastung(in N)|| 0 || 0,5 || 1,0 || 1,5 || 2,0 || 2,5 || 3,0
|-
!Länge (in cm)|| 7,4 || 12,0 || 16,5 || 61,1 || 25,6 || 30,2 || 34,8
|}
 
Die Funktion g ist soweit nach oben verschoben, wie es der Länge der unbelasteten Feder entspricht, also um 7,4.
Daraus ergibt sich der folgender Funktionsterm: <math>g(x) = 9,1x + 7,4 </math>
 
=====2. Song=====
Dies wäre eine willkommene Abwechslung für die Schüler. Der Song liefert alle wichtigen Zusammenhänge für lineare Funktionen. Die Lehrperson könnte ihn am Anfang einsetzen. Es könnte sein, dass es zu viel neues ist für die Schüler. Aber die Lehrkraft könnte dann das gehörte Stück für Stück erarbeiten und am Ende der Einheit darauf zurückkommen, denn dadurch merken es sich die Schüler eventuell besser.
 
Der Song ist zufinden unter: [http://www.youtube.com/watch?v=xGWbjRXl9cI]
 
=====3. Alltagbeispiel <ref>Lambacher/Schweizer: Mathematik Algebra, 9. Klasse, Ernst Klett Verlag Stuttgart, 1988</ref>=====
'''
Carmens Schultag
'''
Carmens Schultag beginnt um 7 Uhr. Sie fährt zunächst mit dem Bus zur Schule. Um 8Uhr beginnt der Unterricht. Von 9.30Uhr bis 9.50Uhr und von 11.20Uhr bis 11.40Uhr ist Pause. Um 13.10Uhr endet der Unterricht. Um 14Uhr ist Carmen wieder zu Hause.
 
a) Zeichne den Graphen der Zuordnung Gesamtzeit der Abwesenheit von zu Hause -> reine Unterrichtszeit <br />
b) Zeichne einen entsprechenden Graphen für deinen eigenen Schultag.
 
Diese Aufgabe beruht auf dem Alltag der Schüler. Sie können es nachvollziehen und ihre eigenen Erfahrungen mit einbringen. Natürlich kann die Lehrkraft dieses Beispiel auf die eigene Schule und eigenen Schüler anpassen. Es wird erst einmal nichts Neues gelehrt, denn auch hier geht es um den bekannten Stoff der Zuordnung.
 
===Allgemeine Beispiele für lineare Funktionen:===
 
Am Anfang der Lehreinheit ist es wichtig, dass Schüler und Schülerinnen einen Bezug zu dem Stoff finden und da ist der Lehrer gefragt. Dies gelingt am besten mithilfe von Alltagsbeispielen.  
Ein häufig gewähltes Beispiel ist die Kostenfunktion – egal, ob es um die Handyrechnung, einen Internettarif oder der Preis für Eiskugeln. Man geht von einem Grundpreis aus, doch dieser erhöht sich in einem gewissen Zeitraum um eine Summe x.
 
Es gibt viele Beispiele für die Anwendung von linearen Funktionen:
 
Aufgabenblatt "Schlange" [http://ne.lo-net2.de/selbstlernmaterial/m/s1fu/lf/lf_aa03.PDF]
<br />
Aufgabenblatt "Flugzeug" [http://ne.lo-net2.de/selbstlernmaterial/m/wk/lr/lr_lf_aa2.PDF]
<br />
Aufgabenblatt "Temperaturwechsel" [http://ne.lo-net2.de/selbstlernmaterial/m/s1fu/lf/lf_aa13.PDF]
<br />
Aufgabenblatt "Fallschirm" [http://ne.lo-net2.de/selbstlernmaterial/m/s1fu/lf/lf_aa11.PDF]
<br />
Interessante Beispiele auch in Weitendorf <ref>Weitendorf Jens: Realitätsbezüge im Analysisunterricht, 1.Auflage 2007, Franzberger Verlag Berlin-Hildesheim</ref>
 
==Probleme mit linearen Funktionen==
 
Ein häufiges Problem im Themengebiet der linearen Funktionen stellt die Abgrenzung von Begrifflichkeiten dar. So sind die linearen Funktionen im Bereich der reellen Zahlen zu unterscheiden von den linearen Funktionen in einem Vektorraum. Die linearen Funktionen müsste man demnach eigentlich affine Funktionen, da die Definition der Linearität hier nicht zutrifft.
Eine weitere Schwierigkeit stellt der Begriff des Anstiegs dar. Hierbei handelt es sich um ein sprachliches Problem, da das Wort "Anstieg" bereits eine aufwärts gerichtete Gerade hervortäuscht. Demnach muss man als Lehrer/in bedenken, dass die Schüler/innen zunächst annehmen, dass ein Anstieg immer positiv ist. Bei der Einführung des Begriffes sollte also darauf geachtet werden, dass auf dieses Problem aufmerksam gemacht wird.
 
 
==Quellen==
 
<references />
 
[[Kategorie:Analysis]]


{{Zitierhinweis}}
{{Zitierhinweis}}

Aktuelle Version vom 14. Juni 2016, 21:01 Uhr

Übersicht

Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Lineare Funktionen: Visualisierung von „Steigung“>

Die meist so genannten „linearen Funktionen“ gehören zu den ersten sog. „elementaren Funktionen“, die im Mathematikunterricht auftreten.
Für den schulischen Kontext gilt folgende umfassende
Definition:

Es sei mit , und Fehler beim Parsen (Syntaxfehler): {\displaystyle f(x)=m·x+b} für alle .
ist dann eine lineare Funktion.

Das Schaubild des Funktionsgraphen von ist eine Gerade mit der Steigung . Stellt man diese Gerade in einem kartesischen Koordinatensystem mit der -Achse als Rechtsachse und der -Achse als Hochachse dar, so ist der sog. -Achsenabschnitt, die Gerade verläuft also durch den Punkt mit den Koordinaten .

Ergänzungen und Anmerkungen

  • Im Mathematikunterricht tauchen lineare Funktionen anfangs noch nicht von in auf, sondern allenfalls von in oder sogar nur von Teilmengen davon.
  • Es sind „Steigung“ und „Anstieg“ zu unterscheiden: Der Anstieg ist die (absolute) „Höhendifferenz“ zwischen zwei Punkten auf einer Geraden, die Steigung ist hingegen die „relative Höhendifferenz“ zwischen zwei Punkten einer Geraden, also der Quotient aus der absoluten Höhendifferenz und der absoluten "Entfernungsdifferenz".
  • Die Steigung kann man – wie bei Verkehrsschildern üblich – auch in Prozent angeben.
  • Die (übliche) Bezeichnung „lineare Funktion“ ist für die hier betrachteten Funktionen eigentlich nicht korrekt: Geht man nämlich davon aus, dass „Abbildung“ und „Funktion“ Synonyme sind, so wird das Problem sofort klar, denn für eine „lineare Abbildung“ gilt Fehler beim Parsen (Syntaxfehler): {\displaystyle f(x)=m·x} , also ist dann . Funktionen vom Typ Fehler beim Parsen (Syntaxfehler): {\displaystyle f(x)=m·x+b} müssten daher eigentlich „affine Funktionen“ genannt werden, kompromissweise ist auch „affin-lineare Funktionen“ denkbar.
  • Die im Mathematikunterricht anzutreffende Bezeichnung „proportionale Funktion“ ist vom Typ Fehler beim Parsen (Syntaxfehler): {\displaystyle f(x)=m·x} , also im Sinne der (Linearen) Algebra eine „lineare Abbildung“.


Der Beitrag kann wie folgt zitiert werden:
Madipedia (2016): Lineare Funktionen. Version vom 14.06.2016. In: dev_madipedia. URL: http://dev.madipedia.de/index.php?title=Lineare_Funktionen&oldid=24706.