Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Andreas Obersteiner/Publikationen: Unterschied zwischen den Versionen

Aus dev_madipedia
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
KKeine Bearbeitungszusammenfassung
 
(3 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 4: Zeile 4:
<!-- Liste der veröffentlichen Literatur. Untergliederung möglich. Personen und Hochschulen bitte mit [[…]] kennzeichnen-->
<!-- Liste der veröffentlichen Literatur. Untergliederung möglich. Personen und Hochschulen bitte mit [[…]] kennzeichnen-->
=== Publikationen in Zeitschriften ===
=== Publikationen in Zeitschriften ===
*Obersteiner A., & Tumpek, C. (2015). Measuring fraction comparison strategies with eye tracking. <I>[[ZDM|ZDM Mathematics Education]] </i>. Advance online publication. doi:10.1007/s11858-015-0742-z
*Strohmaier, A. R., MacKay, K. J., Obersteiner, A., & Reiss, K. M. (2020). Eye tracking methodology in mathematics education research: a systematic literature review. <i>Educational Studies in Mathematics.</i> doi:10.1007/s10649-020-09948-1
*Obersteiner, A., Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2015). Who can escape the natural number bias in rational number tasks? A study involving students and experts. <i>British Journal of Psychology</i>. Advance online publication. doi:10.1111/bjop.12161
*Reinhold, F., Obersteiner, A., Hoch, S., Hofer, S. I., & Reiss, K. (2020). The interplay between the natural number bias and fraction magnitude processing in low-achieving students. <i>Frontiers in Education</i>, 5:29. doi:10.3389/feduc.2020.00029
*Obersteiner, A., Alibali, M. W., & Marupudi, V. (2020). Complex fraction comparisons and the natural number bias: the role of benchmarks. <i>Learning and Instruction, 67</i>. doi:10.1016/j.learninstruc.2020.101307
*Wildgans-Lang, A., Scheuerer, S., Obersteiner, A., Fischer, F., & Reiss, K. (2020). Analyzing prospective mathematics teachers’ diagnostic processes in a simulated environment. <i>ZDM Mathematics Education, 52</i>, 241–254. doi:10.1007/s11858-020-01139-9
*Heitzmann, N., Seidel, T., Opitz, A., Hetmanek, A., Wecker, C., Fischer, M., Ufer, S., Schmidmaier, R., Neuhaus, B., Siebeck, M., Stürmer, K., Obersteiner, A., Reiss, K., Girwidz, R., & Fischer, F. (2019). Facilitating diagnostic competences in simulations: a conceptual framework and a research agenda for medical and teacher education. <i>Frontline Learning Research, 7</i>(4), 1–24. doi:10.14786/flr.v7i4.384
*Siefer, K., Leuders, T., & Obersteiner, A. (2019). Leistung und Selbstwirksamkeitserwartung als Kompetenzdimensionen – Eine Erfassung individueller Ausprägungen im Themenbereich lineare Funktionen. <i>Journal für Mathematik-Didaktik</i>. doi:10.1007/s13138-019-00147-x
*Obersteiner, A.(2018). Multiple pathways between affect and mathematical competence in young children—commentary on the studies in the Special Issue. <i>Educational Studies in Mathematics, 100</i>, 317–323.
*Obersteiner, A., &amp; Staudinger, I. (2018). How the eyes add fractions: Adult eye movement patterns during fraction addition problems. <i>Journal of Numerical Cognition, 4</i>, 317–336.
*F&ouml;rtsch, C., Sommerhoff, D., Fischer, F., Fischer, M. R., Girwidz, R., Obersteiner, A., Reiss, K., St&uuml;rmer, K., Siebeck, M., Schmidmaier, R., Seidel, T., Ufer, S., Wecker, S., &amp; Neuhaus, B. J. (2018). Systematizing professional knowledge of medical doctors and teachers: Development of an interdisciplinary framework in the context of diagnostic competences. <i>Education Sciences, 8</i>, 207.
*Obersteiner, A., Reiss, K., &amp; Heinze, A. (Hrsg.) (2018). Psychologische Theorien in der Mathematikdidaktik. Themenheft im <i>Journal f&uuml;r Mathematik-Didaktik, 39</i>.
*Obersteiner, A., &amp; Hofreiter, V. (2017). Do we have a sense for irrational numbers? <i>Journal of Numerical Cognition, 2</i>, 170–189.
*Obersteiner, A., Van Hoof, J., Verschaffel, L., &amp; Van Dooren, W. (2016). Who can escape the natural number bias in rational number tasks? A study involving students and experts. <i>British Journal of Psychology, 107</i>, 537–555.
*Obersteiner A., &amp; Tumpek, C. (2016). Measuring fraction comparison strategies with eye-tracking. <i>ZDM Mathematics Education, 48</i>, 255–266.
*Obersteiner, A. (2015). Zahlen im Kopf. Erkenntnisse neurowissenschaftlicher Forschung und Implikationen für das Lehren und Lernen von Zahlen. <i>Mathematik differenziert, 3</i>, 8-10.
*Obersteiner, A. (2015). Zahlen im Kopf. Erkenntnisse neurowissenschaftlicher Forschung und Implikationen für das Lehren und Lernen von Zahlen. <i>Mathematik differenziert, 3</i>, 8-10.
*Obersteiner, A., Bernhard, M., & [[Kristina Reiss|Reiss, K.]] (2015). Primary school children's strategies in solving contingency table problems: the role of intuition and inhibition. <i>ZDM Mathematics Education, 47</i>, 825–836.
*Obersteiner, A., Bernhard, M., & [[Kristina Reiss|Reiss, K.]] (2015). Primary school children's strategies in solving contingency table problems: the role of intuition and inhibition. <i>ZDM Mathematics Education, 47</i>, 825–836.
*Obersteiner, A., Reiss, K., Ufer, S., Luwel, K., & Verschaffel, L. (2014). Do first graders make efficient use of external number representations? The case of the twenty-frame. <i>Cognition and Instruction, 32</i>, 353–373.  
*Obersteiner, A., Reiss, K., [[Stefan Ufer|Ufer, S.]], Luwel, K., & Verschaffel, L. (2014). Do first graders make efficient use of external number representations? The case of the twenty-frame. <i>Cognition and Instruction, 32</i>, 353–373.  
*Obersteiner, A., &amp; Reiss, K. (2014). Mathematikleistungen von Sch&uuml;lern: Was sagt uns [[PISA]] 2012? <i>MNU &ndash; Der mathematisch-naturwissenschaftliche Unterricht, 67</i>(4), 197–201.
*Obersteiner, A. & Reiss, K. (2014). Mathematikleistungen von Schülern: Was sagt uns [[PISA]] 2012? <i>MNU &ndash; Der mathematisch-naturwissenschaftliche Unterricht, 67</i>(4), 197–201.
*Pincham, H. L., Matejko, A. A., Obersteiner, A., Killikelly, C., Abrahao, K. P., Benavides-Varela, S., Gabriel, F. C., Rato, J. R., & Vuillier, L. (2014). Forging a new path for Educational Neuroscience: An international young-researcher perspective on combining neuroscience and educational practices. <i>Trends in Neuroscience and Education, 3</i>, 28–31.
*Pincham, H. L., Matejko, A. A., Obersteiner, A., Killikelly, C., Abrahao, K. P., Benavides-Varela, S., Gabriel, F. C., Rato, J. R., & Vuillier, L. (2014). Forging a new path for Educational Neuroscience: An international young-researcher perspective on combining neuroscience and educational practices. <i>Trends in Neuroscience and Education, 3</i>, 28–31.
*Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. <i>Learning and Instruction, 28</i>, 64–72.
*Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. <i>Learning and Instruction, 28</i>, 64–72.
Zeile 19: Zeile 30:
=== Monographien und Buchbeiträge ===
=== Monographien und Buchbeiträge ===


*Obersteiner, A., Dresler, T., Bieck, S. M., &amp; Moeller, K. (2019). Understanding fractions: Integrating results from mathematics education, cognitive psychology, and neuroscience. In A. Norton, &amp; M. W. Alibali (Eds.), <i>Constructing number. Merging perspectives from psychology and mathematics education</i> (pp. 135–162). Cham, Switzerland: Springer.
*Reiss, K. Obersteiner, A., Heinze, A., Itzlinger-Bruneforth, U., &amp; Lin, F.-L. (2019). Large-scale studies in mathematics education research. In H. N. Jahnke, L. Hefendehl-Hebeker (Eds.), <i>Traditions in German-speaking mathematics education research</i> (pp. 249–278). Cham, Switzerland: Springer.
*Reiss, K., &amp; Obersteiner, A. (2019). Competence models as a basis for defining, understanding, and diagnosing students’ mathematical competences. In A. Fritz, V. G. Haase, &amp; P. R&auml;s&auml;nen (Eds.), <i>International handbook of mathematical learning difficulties. From the laboratory to the classroom</i> (pp. 43–56). Cham, Switzerland: Springer.
*Obersteiner, A., Reiss, K., Van Dooren, W., &amp; Van Hoof, J. (2019). Understanding rational numbers—obstacles for learners with and without mathematical learning difficulties. In A. Fritz, V. G. Haase, &amp; P. R&auml;s&auml;nen (Eds.), <i>International handbook of mathematical learning difficulties. From the laboratory to the classroom</i> (pp. 581–594). Cham, Switzerland: Springer.
*Obersteiner, A. (2018). <i>Number sense across number domains: An integrated mathematics educational and cognitive psychological perspective</i>. Habilitation Thesis. Munich: Technical University of Munich.
*Obersteiner, A., &amp; [[Reiss, K.]] (2017). Interventionsstudien zur F&ouml;rderung numerischer Basiskompetenzen rechenschwacher Kinder – ein &Uuml;berblick &uuml;ber theoretische Grundlegungen und F&ouml;rderans&auml;tze. In A. Fritz, S. Schmidt &amp; G. Ricken (Hrsg.), <i>Handbuch Rechenschw&auml;che (3. Aufl.)</i> (S. 308–322). Weinheim: Beltz.
*[[Hedwig Gasteiger|Gasteiger, H.]], Obersteiner, A., &amp; [[Kristina Reiss|Reiss, K.]] (2015). Formal and informal learning environments: Using games to support early numeracy. In J. Torbeyns, E. Lehtinen, &amp; J. Elen (Eds.). <i>Describing and studying domain-specific serious games</i> (pp. 231–250). Heidelberg: Springer.
*[[Hedwig Gasteiger|Gasteiger, H.]], Obersteiner, A., &amp; [[Kristina Reiss|Reiss, K.]] (2015). Formal and informal learning environments: Using games to support early numeracy. In J. Torbeyns, E. Lehtinen, &amp; J. Elen (Eds.). <i>Describing and studying domain-specific serious games</i> (pp. 231–250). Heidelberg: Springer.
*Schiepe-Tiska, A., Reiss, K., Obersteiner, A., Heine, J.-H., Seidel, T., &amp; [[Manfred Prenzel|Prenzel, M.]] (2013). Mathematikunterricht in Deutschland: Befunde aus [[PISA]] 2012. In M. Prenzel, C. S&auml;lzer, E. Klieme, & O. K&ouml;ller (Hrsg.). <i>PISA 2012: Fortschritte und Herausforderungen in Deutschland</i> (S. 123–154). M&uuml;nster: Waxmann.
*Schiepe-Tiska, A., Reiss, K., Obersteiner, A., Heine, J.-H., Seidel, T., &amp; [[Manfred Prenzel|Prenzel, M.]] (2013). Mathematikunterricht in Deutschland: Befunde aus [[PISA]] 2012. In M. Prenzel, C. S&auml;lzer, E. Klieme, & O. K&ouml;ller (Hrsg.). <i>PISA 2012: Fortschritte und Herausforderungen in Deutschland</i> (S. 123–154). M&uuml;nster: Waxmann.

Aktuelle Version vom 12. Juni 2020, 10:25 Uhr

zurück zur Personenseite von Andreas Obersteiner

Veröffentlichungen

Publikationen in Zeitschriften

  • Strohmaier, A. R., MacKay, K. J., Obersteiner, A., & Reiss, K. M. (2020). Eye tracking methodology in mathematics education research: a systematic literature review. Educational Studies in Mathematics. doi:10.1007/s10649-020-09948-1
  • Reinhold, F., Obersteiner, A., Hoch, S., Hofer, S. I., & Reiss, K. (2020). The interplay between the natural number bias and fraction magnitude processing in low-achieving students. Frontiers in Education, 5:29. doi:10.3389/feduc.2020.00029
  • Obersteiner, A., Alibali, M. W., & Marupudi, V. (2020). Complex fraction comparisons and the natural number bias: the role of benchmarks. Learning and Instruction, 67. doi:10.1016/j.learninstruc.2020.101307
  • Wildgans-Lang, A., Scheuerer, S., Obersteiner, A., Fischer, F., & Reiss, K. (2020). Analyzing prospective mathematics teachers’ diagnostic processes in a simulated environment. ZDM Mathematics Education, 52, 241–254. doi:10.1007/s11858-020-01139-9
  • Heitzmann, N., Seidel, T., Opitz, A., Hetmanek, A., Wecker, C., Fischer, M., Ufer, S., Schmidmaier, R., Neuhaus, B., Siebeck, M., Stürmer, K., Obersteiner, A., Reiss, K., Girwidz, R., & Fischer, F. (2019). Facilitating diagnostic competences in simulations: a conceptual framework and a research agenda for medical and teacher education. Frontline Learning Research, 7(4), 1–24. doi:10.14786/flr.v7i4.384
  • Siefer, K., Leuders, T., & Obersteiner, A. (2019). Leistung und Selbstwirksamkeitserwartung als Kompetenzdimensionen – Eine Erfassung individueller Ausprägungen im Themenbereich lineare Funktionen. Journal für Mathematik-Didaktik. doi:10.1007/s13138-019-00147-x
  • Obersteiner, A.(2018). Multiple pathways between affect and mathematical competence in young children—commentary on the studies in the Special Issue. Educational Studies in Mathematics, 100, 317–323.
  • Obersteiner, A., & Staudinger, I. (2018). How the eyes add fractions: Adult eye movement patterns during fraction addition problems. Journal of Numerical Cognition, 4, 317–336.
  • Förtsch, C., Sommerhoff, D., Fischer, F., Fischer, M. R., Girwidz, R., Obersteiner, A., Reiss, K., Stürmer, K., Siebeck, M., Schmidmaier, R., Seidel, T., Ufer, S., Wecker, S., & Neuhaus, B. J. (2018). Systematizing professional knowledge of medical doctors and teachers: Development of an interdisciplinary framework in the context of diagnostic competences. Education Sciences, 8, 207.
  • Obersteiner, A., Reiss, K., & Heinze, A. (Hrsg.) (2018). Psychologische Theorien in der Mathematikdidaktik. Themenheft im Journal für Mathematik-Didaktik, 39.
  • Obersteiner, A., & Hofreiter, V. (2017). Do we have a sense for irrational numbers? Journal of Numerical Cognition, 2, 170–189.
  • Obersteiner, A., Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2016). Who can escape the natural number bias in rational number tasks? A study involving students and experts. British Journal of Psychology, 107, 537–555.
  • Obersteiner A., & Tumpek, C. (2016). Measuring fraction comparison strategies with eye-tracking. ZDM Mathematics Education, 48, 255–266.
  • Obersteiner, A. (2015). Zahlen im Kopf. Erkenntnisse neurowissenschaftlicher Forschung und Implikationen für das Lehren und Lernen von Zahlen. Mathematik differenziert, 3, 8-10.
  • Obersteiner, A., Bernhard, M., & Reiss, K. (2015). Primary school children's strategies in solving contingency table problems: the role of intuition and inhibition. ZDM Mathematics Education, 47, 825–836.
  • Obersteiner, A., Reiss, K., Ufer, S., Luwel, K., & Verschaffel, L. (2014). Do first graders make efficient use of external number representations? The case of the twenty-frame. Cognition and Instruction, 32, 353–373.
  • Obersteiner, A. & Reiss, K. (2014). Mathematikleistungen von Schülern: Was sagt uns PISA 2012? MNU – Der mathematisch-naturwissenschaftliche Unterricht, 67(4), 197–201.
  • Pincham, H. L., Matejko, A. A., Obersteiner, A., Killikelly, C., Abrahao, K. P., Benavides-Varela, S., Gabriel, F. C., Rato, J. R., & Vuillier, L. (2014). Forging a new path for Educational Neuroscience: An international young-researcher perspective on combining neuroscience and educational practices. Trends in Neuroscience and Education, 3, 28–31.
  • Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 28, 64–72.
  • Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students' basic number processing and arithmetic skills. Learning and Instruction, 23, 125–135.
  • Torbeyns, J., Obersteiner, A., & Verschaffel, L. (2012). Number sense in early and elementary mathematics education. Yearbook of the Department of Early Childhood Studies. A Journal of Research in Education and Training, 5, 60–75.
  • Obersteiner, A., Dresler, T., Reiss, K., Vogel, A.C.M., Pekrun, R., & Fallgatter, A.J. (2010). Bringing brain imaging to the school to assess arithmetic problem solving: Chances and limitations in combining educational and neuroscientific research. ZDM – The International Journal on Mathematics Education, 42, 541–554.
  • Dresler, T., Obersteiner, A., Schecklmann, M., Vogel, A.C.M., Ehlis, A.-C., Richter, M.M., Plichta, M.M., Reiss, K., Pekrun, R., & Fallgatter, A.J. (2009). Arithmetic tasks in different formats and their influence on behavior and brain oxygenation as assessed with near-infrared spectroscopy (NIRS): A study involving primary and secondary school children. Journal of Neural Transmission, 12, 1689–1700.

Monographien und Buchbeiträge

  • Obersteiner, A., Dresler, T., Bieck, S. M., & Moeller, K. (2019). Understanding fractions: Integrating results from mathematics education, cognitive psychology, and neuroscience. In A. Norton, & M. W. Alibali (Eds.), Constructing number. Merging perspectives from psychology and mathematics education (pp. 135–162). Cham, Switzerland: Springer.
  • Reiss, K. Obersteiner, A., Heinze, A., Itzlinger-Bruneforth, U., & Lin, F.-L. (2019). Large-scale studies in mathematics education research. In H. N. Jahnke, L. Hefendehl-Hebeker (Eds.), Traditions in German-speaking mathematics education research (pp. 249–278). Cham, Switzerland: Springer.
  • Reiss, K., & Obersteiner, A. (2019). Competence models as a basis for defining, understanding, and diagnosing students’ mathematical competences. In A. Fritz, V. G. Haase, & P. Räsänen (Eds.), International handbook of mathematical learning difficulties. From the laboratory to the classroom (pp. 43–56). Cham, Switzerland: Springer.
  • Obersteiner, A., Reiss, K., Van Dooren, W., & Van Hoof, J. (2019). Understanding rational numbers—obstacles for learners with and without mathematical learning difficulties. In A. Fritz, V. G. Haase, & P. Räsänen (Eds.), International handbook of mathematical learning difficulties. From the laboratory to the classroom (pp. 581–594). Cham, Switzerland: Springer.
  • Obersteiner, A. (2018). Number sense across number domains: An integrated mathematics educational and cognitive psychological perspective. Habilitation Thesis. Munich: Technical University of Munich.
  • Obersteiner, A., & Reiss, K. (2017). Interventionsstudien zur Förderung numerischer Basiskompetenzen rechenschwacher Kinder – ein Überblick über theoretische Grundlegungen und Förderansätze. In A. Fritz, S. Schmidt & G. Ricken (Hrsg.), Handbuch Rechenschwäche (3. Aufl.) (S. 308–322). Weinheim: Beltz.
  • Gasteiger, H., Obersteiner, A., & Reiss, K. (2015). Formal and informal learning environments: Using games to support early numeracy. In J. Torbeyns, E. Lehtinen, & J. Elen (Eds.). Describing and studying domain-specific serious games (pp. 231–250). Heidelberg: Springer.
  • Schiepe-Tiska, A., Reiss, K., Obersteiner, A., Heine, J.-H., Seidel, T., & Prenzel, M. (2013). Mathematikunterricht in Deutschland: Befunde aus PISA 2012. In M. Prenzel, C. Sälzer, E. Klieme, & O. Köller (Hrsg.). PISA 2012: Fortschritte und Herausforderungen in Deutschland (S. 123–154). Münster: Waxmann.
  • Obersteiner, A. (2012). Mentale Repräsentationen von Zahlen und der Erwerb arithmetischer Fähigkeiten. Konzeptionierung und Evaluation einer Förderung mit psychologisch-didaktischer Grundlegung und Evaluation im ersten Schuljahr. Münster: Waxmann.
  • Obersteiner, A., Reiss, K., & Martel, A. (2011). Offene Aufgaben in Schulbüchern und ihr Einsatz im Mathematikunterricht. In E. Matthes & S. Schütze (Hrsg.), Aufgaben im Schulbuch (S. 303–313). Bad Heilbrunnn: Klinkhardt.
  • Reiss, K., Pekrun, R., Dresler, T., Obersteiner, A., & Fallgatter, A.J. (2011). BrainMath: Eine neurophysiologische Untersuchung mathematikrelevanter Hirnfunktionen bei Schulkindern: Einflüsse von Alter, Gefühlszustand und Präsentationsformat. In A. Heine & A.M. Jacobs (Hrsg.), Lehr-Lern-Forschung unter neurowissenschaftlicher Perspektive. Ergebnisse der zweiten Förderphase des Programms NIL: Neurowissenschaften – Instruktion – Lernen (S. 41–55). Münster: Waxmann.