Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Weg-Zeit-Diagramme: Unterschied zwischen den Versionen

Aus dev_madipedia
Zur Navigation springen Zur Suche springen
[unmarkierte Version][unmarkierte Version]
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 36: Zeile 36:
Zeichnet man diese Werte in ein Weg-Zeit-Diagramm, so entsteht folgender Graph:
Zeichnet man diese Werte in ein Weg-Zeit-Diagramm, so entsteht folgender Graph:


[[Datei:Auto.jpg]]
[[Datei:Auto1.jpg|height=800]]


<math> s(t)</math> ist eine [[Lineare Funktionen|lineare Funktion]]. Der Anstieg der Funktion entspricht der Durchschnittsgeschwindigkeit und kann über das Steigungsdreieck (Differenzenquotient) ermittelt werden:
<math> s(t)</math> ist eine [[Lineare Funktionen|lineare Funktion]]. Der Anstieg der Funktion entspricht der Durchschnittsgeschwindigkeit und kann über das Steigungsdreieck (Differenzenquotient) ermittelt werden:
Zeile 86: Zeile 86:
[[Datei:Auto2.jpg]]
[[Datei:Auto2.jpg]]


Der entstandene Funktionsgraph ist eine Parabel 2. Grades.
Der entstandene Funktionsgraph ist ein Teil einer [[Quadratische Funktionen|Parabel 2. Grades]].


Auch hier kann man die Durchschnittsgeschwindigkeit anhand des Differenzenquotienten ermitteln.
Auch hier kann man die Durchschnittsgeschwindigkeit anhand des Differenzenquotienten ermitteln.

Version vom 21. Januar 2013, 17:41 Uhr


Weg-Zeit-Diagramme sind eine spezielle Form der Darstellung von Sachverhalten, bei denen der Weg s von der Zeit t abhängt.

Dabei wird die Zeit t auf der Abzissen-, der Weg s auf der Ordinatenachse abgetragen.

Die Durchschnittsgeschwindigkeit kann mit Hilfe des Differenzenquotienten ermittelt werden. Die Geschwindigkeit zu einem bestimmten Zeitpunkt entspricht dem Differentialquotienten bzw. der ersten Ableitung an der Stelle .

Anwendung im Mathematikunterricht

Für den Mathematikunterricht kann man diese Form der Darstellung von Funktionen nutzen, um die Begriffe Ableitung, Differenzenquotient, Anstieg, usw. praxisnah zu erklären. Dabei kann eine Verbindung zum Physik-Unterricht und umgekehrt hergestellt werden.

Beispielaufgabe

Ein Auto fahre mit konstanter Geschwindigkeit von A nach B. Dabei hat es folgende Wege nach folgenden Zeiten zurückgelegt:

Weg in m Zeit in s
5 1
10 2
15 3
20 4


Zeichnet man diese Werte in ein Weg-Zeit-Diagramm, so entsteht folgender Graph:

height=800

ist eine lineare Funktion. Der Anstieg der Funktion entspricht der Durchschnittsgeschwindigkeit und kann über das Steigungsdreieck (Differenzenquotient) ermittelt werden:

.

Damit hat man für die Bewegung des Autos eine Funktion gefunden:

Die Momentangeschwindigkeit z.B. zum Zeitpunkt ermittelt man durch Bilden der Ableitung der Funktion und Einsetzen von :

Man erkennt, dass das Auto, egal zu welchem Zeitpunkt tatsächlich mit konstanter Geschwindigkeit fährt. Es handelt sich um eine geradlinig gleichförmige Bewegung.


Etwas eindrucksvoller ist die Betrachtung einer geradlinig beschleunigten Bewegung, etwa beim Anfahren eines Autos an einer Ampel:

Eine Auto beschleunige mit . Folgende Messwerte wurden aufgenommen:

Weg in m Zeit in s
1,5 1
6 2
13,5 3
24 4
37,5 5
54 6

Hier erhält man für das -Diagramm folgenden Graph:

Auto2.jpg

Der entstandene Funktionsgraph ist ein Teil einer Parabel 2. Grades.

Auch hier kann man die Durchschnittsgeschwindigkeit anhand des Differenzenquotienten ermitteln.

Die Funktion beschreibt die Bewegung des Fahrzeugs. Da das Auto keine Anfangsgeschwindigkeit hat und der Anfangsweg ebenfalls 0 ist, verschwinden diese Terme aus der Ausgangsgleichung.

Es interessiert die (Momentan-) Geschwindigkeit zum Zeitpunkt .

<math>v(t=3,5s)=s'(t=3,5s)=3\frac{m}{s^2} \cdot 3,5s=10,5 \frac{m}{s}