Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Pfeildiagramm: Unterschied zwischen den Versionen

Aus dev_madipedia
Zur Navigation springen Zur Suche springen
[unmarkierte Version][unmarkierte Version]
Keine Bearbeitungszusammenfassung
Zeile 12: Zeile 12:
Am Pfeildiagramm lassen sich grundlegende Eigenschaften (z.B. Umkehrbarkeit) sowie die Verkettung von Funktionen ikonisch gut verdeutlichen.  
Am Pfeildiagramm lassen sich grundlegende Eigenschaften (z.B. Umkehrbarkeit) sowie die Verkettung von Funktionen ikonisch gut verdeutlichen.  
Bei dieser Darstellungsart werden bewusst spezielle Eigenschaften der Definitions- bzw. Wertemengen abgesehen.<ref>[[Werner Blum|Blum W.]], [[Günter Törner|Törner, G.]]: Didaktik der Analysis, Vandenhoeck & Ruprecht Verlag, Göttingen, 1983, Seite 23</ref>
Bei dieser Darstellungsart werden bewusst spezielle Eigenschaften der Definitions- bzw. Wertemengen abgesehen.<ref>[[Werner Blum|Blum W.]], [[Günter Törner|Törner, G.]]: Didaktik der Analysis, Vandenhoeck & Ruprecht Verlag, Göttingen, 1983, Seite 23</ref>
Text
Text


==Beispiel für den Einsatz von Venn-Diagrammen bei Funktionen:==
==Beispiel für den Einsatz von Venn-Diagrammen bei Funktionen:==

Version vom 15. Januar 2013, 16:18 Uhr

siehe auch: Mengendiagramm

Pfeildiagramme dienen zur graphischen Veranschaulichung der Zusammenhänge zwischen Mengen und Funktionen. Diese Darstellungsart basiert auf dem Schema der Venn-Diagramme.



weitere Darstellungsarten von Funktionen

Beschreibung:

Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Beispiel eines Pfeildiagramms

Am Pfeildiagramm lassen sich grundlegende Eigenschaften (z.B. Umkehrbarkeit) sowie die Verkettung von Funktionen ikonisch gut verdeutlichen. Bei dieser Darstellungsart werden bewusst spezielle Eigenschaften der Definitions- bzw. Wertemengen abgesehen.[1]

Beispiel für den Einsatz von Venn-Diagrammen bei Funktionen:

(http://www.cevis.uni-bremen.de/Binaries/Binary978/Kap4FunkGleich.pdf) Abb. 4.1: Beispiel eines Mengendiagramms einer Funktion Verschiedenen Personen (A, B, C und D) haben jeweils ein Haustier. Jeder Person kann also ein Haustier zugeordnet werden. Hätte eine Person mehrere Haustiere, wäre die Zuordnung keine Funktion. Allerdings dürfen Elemente der Wertemenge mehreren Elementen der Definitionsmenge zugeordnet sein; Funktionswerte können mehrfach angenommen werden. Eine Darstellung mit dem im Beispiel verwendeten Venn-Diagramm bietet sich nur an, wenn die Definitionsmenge wenige Werte enthält. Häufig ist die Definitionsmenge jedoch die Menge ! der reellen Zahlen, ein Intervall etc. Dann bietet sich folgende Darstellung an. Funktionsgraph


Exemplarische Beispielaufgaben aus der Schulbuchliteratur

Gymnasium
Klassenstufe 7:
Lernstufen Mathematik 7 (1994): Mathematik Klasse 7, Cornelsen, ISBN-13:9783464521076, S.41
Hahn/Dzewas Mathematik 7 (1995): Mathematik Klasse 7, Westermann, ISBN-10:3141129576, S.7
Mathematik 7. Schuljahr (1986): Mathematik Klasse 7, Schwamm Bagel, ISBN-10:3590123435, S.19
Klassenstufe 8:
Mathematik 8 Sachsen-Anhalt Gymnasium (2006): Mathematik Klasse 8, Duden Paetec, ISBN-13:9783898185882, S.67

Beispiele für Erklärungen und Verwendungen aus der Schulbuchliteratur

Text

Text

Text

Text

Text


weitere Darstellungsarten von Funktionen

Quellen:

  1. Blum W., Törner, G.: Didaktik der Analysis, Vandenhoeck & Ruprecht Verlag, Göttingen, 1983, Seite 23