Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Frank Schumann/Publikationen: Unterschied zwischen den Versionen

Aus dev_madipedia
Zur Navigation springen Zur Suche springen
[unmarkierte Version][gesichtete Version]
(tw. Anpassung an APA-Standards)
(Links entfernt)
 
(103 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{infobox|RichtlinienBeachten}}
[[Frank Schumann|Zurück zur Personenseite]]
[[Frank Schumann|Zurück zur Personenseite]]


=== Lernvideos ===
=== Animationen ===
 
[[Frank Schumann|Schumann, F.]] (2014-2016). Mathematik visualisieren - ''5 GIF-Animationen ([[GeoGebra]]) für den Einsatz im Mathematik- und Physikunterricht''. Stuttgart, Deutschland: FSchumann.COM. Gesamtliste aller [http://mathe-innovativ.fschumann.com/imeb-in-mathe-einfach-besser/in-mathe-einfach-besser-animationen/ Animationen].
 
* [[Frank Schumann|Schumann, F.]] (2016). '''Bewegungsaufgabe. Fahrradpanne'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/animation-bewegungsaufgabe/ GIF].
* [[Frank Schumann|Schumann, F.]] (2016). '''Mit Formeln umgehen. Formel am Oktaeder'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/gif_animation-mit-formeln-umgehen/ GIF].
* [[Frank Schumann|Schumann, F.]] (2014). '''Funktionen. Rotierendes Dreieck'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/gif-rotierendes-dreieck/ GIF].
* [[Frank Schumann|Schumann, F.]] (2014). '''Scheitelform. Quadratische Funktionsgleichungen in der Scheitelpunktsform'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/gif-quadratische-funktionsgleichungen-in-der-scheitelpunktsform/ GIF].
* [[Frank Schumann|Schumann, F.]] (2014). '''Maßstab. Vergrößern und Verkleinern einer ebenen Figur'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/gif_vergroessern_und_verkleinern_einer-figur/ GIF].
 
=== Applets ===
 
[[Frank Schumann|Schumann, F.]] (2015-2019). Mathematik visualisieren - ''227 Java-Applets ([[GeoGebra]]) für den Einsatz im Mathematik- und Physikunterricht''. Stuttgart, Deutschland: FSchumann.COM. Gesamtliste aller [http://mathe-innovativ.fschumann.com/applet-anteile-in-prozent-schreiben/ Applets].
 
====2019====


* [[Frank Schumann|Schumann, F.]] (2013-2015). ''Lernvideos für den Einsatz im Mathematikunterricht am Gymnasium''. Stuttgart, Deutschland: FSchumann.COM. [http://www.in-mathe-einfach-besser.de Liste: Lernvideos],
* [[Frank Schumann|Schumann, F.]] (2019). Flächeninhalte und Rauminhalte, Flächeninhalt und Umfang von Polygonen, '''Flächeninhalt eines Rechtecks'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-flaecheninhalt-eines-rechtecks/ Applet].
* [[Frank Schumann|Schumann, F.]] (2019). Rechnen mit rationalen Zahlen, '''Unechte Brüche und gemischte Schreibweise'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-unechte-brueche-und-gemischte-schreibweise/ Applet].
* [[Frank Schumann|Schumann, F.]] (2019). Rechnen mit rationalen Zahlen, '''Wo liegt am Zahlenstrahl die Zahl 9/5?'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/wo-liegt-am-zahlenstrahl-die-zahl-9-5/ Applet].
* [[Frank Schumann|Schumann, F.]] (2019). Rechnen mit rationalen Zahlen, '''Rationale Zahlen an der Zahlengeraden'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-rationale-zahlen-an-der-zahlengeraden/ Applet].
* [[Frank Schumann|Schumann, F.]] (2019). Verallgemeinerung bei Funktionen und Gleichungen, Quadratische Funktionen und Gleichungen, '''Quadratische Ungleichungen mit Skizzen lösen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-quadratische-ungleichungen-mit-skizzen-loesen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2019). Trigonometrische Funktionen, '''Die Sinusfunktion mit vier Parametern'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-die-sinusfunktion-mit-vier-parametern/ Applet].
* [[Frank Schumann|Schumann, F.]] (2019). Trigonometrische Funktionen, '''Die Ableitung der Sinusfunktion'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-die-ableitung-der-sinusfunktion/ Applet].
* [[Frank Schumann|Schumann, F.]] (2019). Trigonometrische Funktionen, '''Die Ableitung der Kosinusfunktion'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-die-ableitung-der-kosinusfunktion/ Applet].
* [[Frank Schumann|Schumann, F.]] (2019). Daten und Zufall, Kombinatorik, '''Binomialkoeffizient „n über k“'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-binomialkoeffizient-n-ueber-k/ Applet].
* [[Frank Schumann|Schumann, F.]] (2019). Einführung in die Differenzial- und Integralrechnung, '''Monotonieintervalle bestimmen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-monotonieintervalle-bestimmen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2019). Beziehungen in geometrischen Figuren, '''Satz des Thales mit Beweis'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-satz-des-thales-mit-beweis/ Applet].
* [[Frank Schumann|Schumann, F.]] (2019). Punkte und Vektoren, '''Geraden in der Ebene'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-geraden-in-der-ebene/ Applet].
* [[Frank Schumann|Schumann, F.]] (2019). Einführung in die Differenzial- und Integralrechnung, '''Berechnen der Tangentengleichung'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnen-der-tangentengleichung/ Applet].


====Abhängigkeiten beschreiben====
====2018====
* '''Zuordnungen am Fieberthermometer'''. Im Lernvideo wird der Begriff Zuordnung exemplarisch eingeführt. Am Anfang steht eine Kurzgeschichte, die möglicherweise zu Irritationen führen kann (soll). Im Hauptteil wird eine allgemeine Aufgabe formuliert, um eine Zuordnung verschiedenartig zu beschrieben: schematische Zeichnung, Rechenautomaten, Term mit Pfeilrechnung, Tabelle und Diagramm mit dynamischen Punkt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Zuordnungen in einem rechtwinkligen Koordinatensystem 1'''. Im Lernvideo, Teil 1, werden zu Anfang Grundbegriffe, wie zum Beispiel Abszisse oder Ordinate eines Punktes wiederholt. Der Begriff Zuordnung als (späterer) Oberbegriff für Funktionen wird zunächst graphisch danach auch tabellarisch illustriert und durch eine schülergerechte Definition eingeführt.
* '''Zuordnungen in einem rechtwinkligen Koordinatensystem 2'''. Im Lernvideo, Teil 2, wird über zwei unabhängige Schieberegler die dynamische Position eines Punktes in der Ebene im rechtwinkligen Koordinatensystem festgelegt. Zur Beschreibung von Abhängigkeiten von Zahlen oder Größen werden Beispiele für Zuordnungen mit (expliziten) Bildungsvorschriften graphisch durch Punktspuren illustriert. Die fundamentalen Abbildungsbegriffe unabhängige und abhängige Variable werden erläutert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Proportionale Zuordnung'''. Am Beipiel eines tropfenden Wasserhahnes werden die Größen Zeit und Volumen in Abhängigkeit zueinander tabellarisch und graphisch dargestellt. Es wird ein Merkmal proportionaler Zuordnung erläutert und angewendet. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Umfang eines Kreises'''. Der Umfang eines Kreises. Durch ein Simulationsexperiment wird erläutert, was man unter dem Umfang eines Kreises versteht und wie man den Umfang berechnen kann. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Formel für den Flächeninhalt eines Kreises'''. Es wird die Gleichung zur Berechnung des Kreisflächeninhaltes durch Umlegen von Tortenstücken (Kreissektoren) plausibel gemacht.
* '''Wie verändern sich Umfang bzw. Flächeninhalt eines Kreises?'''. Es werden funktionale Zusammenhänge zu Kreisumfang und Kreisflächeninhalt betrachtet. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Dreisatz bei proportionalen Zuordnungen'''. Das Rechenverfahren, Dreisatz bei proportionalen Zuordnungen, wird exemplarisch eingeführt. Die Schülerinnen und Schüler sollen sich in ihrem Lehrbuch über das Verfahren informieren und anschließend auf das Beispiel im Lernvideo anwenden. Das Verfahren wird mit dem Merkmal proportionaler Zuordnungen begründet. Das Dreisatzverfahren ist ein alternatives Rechenverfahren für proportionale Abhängigkeiten.
* '''Antiproportionale Zuordnung'''. Eine Animation erzeugt flächengleiche Rechtecke. Ein Eckpunkt der Rechtecke zeigt den Verlauf einer Hyperbel in einem rechtwinkligen Koordinatensystem. Die Zuordnung wird durch Tabelle, Graph und einen Term veranschaulicht. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Vertiefung Proportionalität'''. In diesem Video werden weitere Merkmale zur Identifikation proportionaler Zuordnungen vorgestellt und erläutert. Es handelt sich dabei um die Merkmale Quotientengleichheit, Ursprungsgerade und Gleichung zur Proportionalität. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Vertiefung Antiproportionalität'''. In diesem Video werden weitere Merkmale zur Identifikation antiproportionaler Zuordnungen vorgestellt und erläutert. Es handelt sich dabei um die Merkmale Produktgleichheit, Hyperbel und Gleichung zur Antiproportionalität. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Dreisatz bei Proportionalität'''. In diesem Video wird ein interaktives Tabellenblatt vorgestellt, welches den Dreisatz bei Proportionalität unterstützt. An einem einfachen Beispiel wird erläutert, wie man diese Tabellenblatt bedienen kann. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Verhältnisgleichung bei Proportionalität'''. In diesem Video wird ein interaktives Tabellen-CAS-Blatt vorgestellt, welches die Verhältnisgleichung bei Proportionalität unterstützt (eine sinnvolle Alternative zum Dreisatz). An einem einfachen Beispiel wird erläutert, wie man dieses Tabellenblatt bedienen kann. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Abhängigkeiten beschreiben mittels Proportionalitätsfaktor'''. Die Bedeutung des Proportionalitätsfaktors wird im Lernvideo am Beispiel der Zuordnung aus Quaderhöhe in Volumen umfassend erläutert. Dabei spielen die Gleichung der Ursprungsgerade und das Steigungsdreieck eine wesentliche Rolle. Ebenso wird erläutert, dass die Abhängigkeit einer Grösse nur durch verändern einer anderen Grösse demonstriert werden kann. Alle anderen unabhängigen Grössen müssen bei einer Animation konstant gehalten werden. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Terme und Zahlengitter'''. Um Abhängigkeiten zwischen Zahlen bzw. Grössen beschreiben zu können, eignen sich variable Terme besonders gut. Ich stelle ein Beispiel für ein Zahlengitter vor und fordere den Betrachter auf, die einzelnen Zahlen in den Zellen des Zahlengitters in Abhängigkeit eines Schiebereglers a mittels variabler Terme zu beschreiben. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Lineare Zuordnungen'''. Es wird eine Lehrbuchaufgabe ausführlich besprochen und dafür Geogebra als veranschaulichendes Hilfsmittel verwendet. Weiterhin wird die Aufgabe durch Einführen von Variablen erweitert. Auch dieses Vorgehen wird durch Dynamisierung in Geogebra illustriert.
* '''Formel für die Kosten'''. Im Video wird eine Anwendungsaufgabe für lineare Zuordnungen ausführlich besprochen. Es geht einerseits um die Suche nach einer Formel nach dem Vorbild des Rechenmodells für lineare Zuordnungen und andererseits um die Berechnung von Kosten mithilfe des in der Formel enthaltenen Terms f(x). Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Graphen linearer Zuordnungen zeichnen'''. In diesem Lernvideo wird das Vorgehen zum kontrollierten Üben zum Zeichnen von Graphen linearer Zuordnungen mit einem GeoGebra-Arbeitsblatt sukzessive demonstriert. Lösungstexte und zugehörige Geraden mit Steigungsdreieck werden über Kontrollkästchen im Einzelnen sichtbar gemacht. Schieberegler können zum Variieren von Zahlen genutzt werden.


====Ähnlichkeit====
* [[Frank Schumann|Schumann, F.]] (2018). Einführung in die Differenzial- und Integralrechnung, '''Ableitungsfunktion – analytisch'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-ableitungsfunktion-analytisch/ Applet].
* '''Zentrische Streckung 1'''. Es werden die Eigenschaften der zentrischen Streckung vorgestellt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] (2018). Einführung in die Differenzial- und Integralrechnung, '''Die Ableitungsfunktion f‘'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-die-ableitungsfunktion-f-strich/ Applet].
* '''Zentrische Streckung 2 - Konstruktion von Bildpunkten 1'''. Die Konstruktion von Bildpunkten wird vorgestellt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] (2018). Rechnen mit rationalen Zahlen, '''Das kleinste gemeinsame Vielfache – kgV'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-das-kleinste-gemeinsame-vielfache-kgv/ Applet].
* '''Zentrische Streckung 3 - Konstruktion von Bildpunkten 2'''. Die Konstruktion von Bildpunkten bei einer zetrischen Streckung wird vorgestellt. Bei diesem Konstruktionsverfahren wird ausschließlich konstruiert. Die Konstruktion orientiert sich am Strahlensatz, Teil 1. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzfunktionen und ganzrationale Funktionen, '''Verhalten von f für x gegen unendlich'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-verhalten-von-f-fuer-x-gegen-unendlich/ Applet].
* '''Quadrat mit maximalem Flächeninhalt im gleichseitigen Dreieck'''. Es wird eine klassische Konstruktionsaufgabe zur Ähnlichkeit von Quadraten vorgestellt, Hinweise zur Lösungsfindung gegeben und schließlich die Lösung zur Konstruktion eines Quadrates innerhalb eines gleichseitigen Dreiecks mit maximalem Flächeninhalt dargeboten. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzfunktionen und ganzrationale Funktionen, '''Potenzfunktionen mit ganzzahligen Exponenten'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-potenzfunktionen-mit-ganzzahligen-exponenten/ Applet].
* '''Strahlensatz, Teil 1'''. Aus einem Auftrag zur zentrischen Streckung eines Dreiecks mit einem Eckpunkt als Streckzentrum und dem Streckfaktor k=3 wird der Strahlensatz, Teil 1 exemplarisch formuliert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] (2018). Flächeninhalte und Rauminhalte, Flächeninhalte und Volumen von Körpern, '''Volumen eines Quaders'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-volumen-eines-quaders/ Applet].
* '''Strahlensatz, Teil 2'''. Ausgehend von einer zentrischen Streckung wird eine Strahlensatzfigur gewonnen. Es erfolgt eine Interpretation für den Strahlensatz, Teil 2. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] (2018). Flächeninhalte und Rauminhalte, Flächeninhalte und Volumen von Körpern, '''Der Oberflächeninhalt eines Quaders'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-der-oberflaecheninhalt-eines-quaders/ Applet].
* '''Beweis zu Strahlensatz, Teil 1'''. Es wird an einer Strahlensatzfigur eine Verhältnisgleichung aus gleichliegenden Strahlenabschnitten zum Strahlensatz, Teil 1 bewiesen.
* [[Frank Schumann|Schumann, F.]] (2018). Flächeninhalte und Rauminhalte, Flächeninhalte und Volumen von Körpern, '''Alle Netze des Würfels'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-alle-netze-des-wuerfels/ Applet].
* '''Raumdiagonale im Quader'''. Mit Hilfe des Satzes des Pythagoras werden Flächen- und Raumdiagonale im Quader berechnet. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] (2018). Flächeninhalte und Rauminhalte, Flächeninhalte und Volumen von Körpern, '''Volumen einer Halbkugel'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-volumen-einer-halbkugel/ Applet].
* '''64 gleich 65'''. Die Zahlen 3, 5, 8 und 13 sind Glieder der Fibonacci-Folge. Als Seitenlängen bauen Sie Dreiecke, Trapeze, ein Quadrat und ein Rechteck auf. Beim Umlegen eines Quadrates zu einem Rechteck werden dessen Flächeninhalte verglichen. Es entsteht die Gleichung 64=65. Die Frage, worin liegt der Denkfehler wird zur indirekten Herausforderung dieses Lernvideos.
* [[Frank Schumann|Schumann, F.]] (2018). Flächeninhalte und Rauminhalte, Flächeninhalt und Umfang von Kreisen und Kreisteilen, '''Flächeninhalt eines Kreises'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-flaecheninhalt-eines-kreises/ Applet].
* [[Frank Schumann|Schumann, F.]] (2018). Flächeninhalte und Rauminhalte, Flächeninhalt und Umfang von Kreisen und Kreisteilen, '''Approximation der Kreiszahl'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-approximation-der-kreiszahl/ Applet].
* [[Frank Schumann|Schumann, F.]] (2018). Flächeninhalte und Rauminhalte, Flächeninhalt und Umfang von Kreisen und Kreisteilen, '''Bogenlänge und Flächeninhalt eines Kreissektors'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-bogenlaenge-und-flaecheninhalt-eines-kreissektors/ Applet].
* [[Frank Schumann|Schumann, F.]] (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, '''Graphisches Lösen von Exponentialgleichungen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-graphisches-loesen-von-exponentialgleichungen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, '''Potenzen mit natürlichen Exponenten (n>0)'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-potenzen-mit-natuerlichen-exponenten/ Applet].
* [[Frank Schumann|Schumann, F.]] (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, '''Potenzen mit ganzzahligen Exponenten'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-potenzen-mit-ganzzahligen-exponenten/ Applet].
* [[Frank Schumann|Schumann, F.]] (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, '''Vereinfachen von Potenz- und Wurzeltermen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-vereinfachen-von-potenz-und-wurzeltermen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, '''Graphisches Lösen einfacher Potenzgleichungen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-graphisches-loesen-einfacher-potenzgleichungen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, '''Einfache Potenzgleichungen lösen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-einfache-potenzgleichungen-loesen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, '''Einfache Exponentialgleichungen lösen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-einfache-exponentialgleichungen-loesen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2018). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Funktionen, '''Funktionswert rechnerisch und graphisch bestimmen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-funktionswert-rechnerisch-und-graphisch-bestimmen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2018). Quadratwurzel und reelle Zahlen, '''Wie groß ist die Höhe?''' Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-wie-gross-ist-die-hoehe/ Applet].


====Einführung in die Differenzialrechnung====
====2017====
* '''Steigung einer Geraden'''. In diesem Lernvideo wird das Thema: "Steigung einer Geraden“ vielseitig besprochen. Auf unterschiedlichen Wegen werden entweder die Steigungszahl m oder der Steigungswinkel a einer Geraden g berechnet.
* '''Differenzenquotient (mittlere Änderungsrate)'''. Im Lernvideo wird die geometrische Bedeutung des Differenzenquotienten in GeoGebra umfassend illustriert. Zu Beginn wird eine Definition für den Differenzenquotienten aus einfachen Beispielen zur Bestimmung der mittleren Änderungsrate für h ungleich Null erarbeitet.
* '''Differenzenquotient und lineare Funktionen'''. Im Lernvideo wird der Differenzenquotient auf lineare Funktionen angewendet und analytisch durch die Steigungszahl m aus f(x)=m*x+n beschrieben. Es wird ein Satz formuliert und bewiesen.
* '''Differenzenquotient und spezielle quadratische Funktion'''. Im Lernvideo wird der Differenzenquotient auf eine spezielle quadratische Funktion f angewendet und analytisch durch den Term: 2*x0 + h beschrieben. Es wird ein Satz formuliert. Es folgt eine Übung zur Tätigkeit: Beweisen.
* '''Beobachtungen unter dem Graphen-Mikroskop'''. Im Lernvideo (ohne Ton) werden an der Funktion f mit f(x) = 0.1*x2 zwei Simulationsexperimente in GeoGebra demonstriert, die das „Erforschen“ zur Linearisierung differenzierbarer Funktionen anschaulich motivieren sollen.
* '''Das Tangentenproblem'''. Im Lernvideo wird der Begriff der lokalen Steigung einer Funktion, die sich an der Stelle x_0 unter dem „Graphen-Mikroskop“ linearisieren lässt, durch verschiedene Simulationsexperimente in GeoGebra induktiv erarbeitet. Das Tangentenproblem entwickelt sich aus dem Verschwinden der Sekante für h gegen null (numerische Division durch null!). Es folgt eine Definition für die Ableitung f Strich von x null in einer für Lernende der Klassenstufe 10 angemessenen Fachsprache. Eine exakte Definition für den Grenzübergang des Differenzenquotienten für h gegen null ist auf Grund der eingeschränkten Begriffsbildung didaktisch nicht angebracht.
* '''Ableitung einer Funktion an der Stelle x_0'''. Im Lernvideo werden Übungen am Differenzenquotienten zur Berechnung der Ableitung f Strich von x_0 exemplarisch angeleitet.
* '''Gleichung der Tangente in x_0'''. Im Lernvideo wird die allgemeine Gleichung einer Tangente t zu einer differenzierbaren Funktion f an der Stelle x_0 hergeleitet. Ein Rechenbeispiel verdeutlicht die Anwendung dieser allgemeinen Tangentengleichung.
* '''Graphisch Ableiten'''. Im Lernvideo wird gezeigt, wie man in GeoGebra einen Funktionsgraphen graphisch ableitet. Es wird die Lageveränderung der Tangente t an der Stelle x_A näher untersucht.
* '''Potenzregel vermuten'''. Im Lernvideo wird die Potenzregel zur Ableitung von Potenzfunktionen mit ganzzahligem Exponenten induktiv gewonnen. Auf einen Beweis der Potenzregel wird verzichtet.
* '''Oben offene Schachtel (3D)'''. Im Lernvideo wird eine Extremwertaufgabe – oben offene Schachtel - analysiert, eine Zielfunktion analytisch beschrieben und auf graphischem Wege gelöst. Dabei werden zwei zentrale Begriffe aus der Kurvendiskussion eingeführt: lokales und globales Maximum. Im Lernvideo wird darauf verwiesen, dass im bevorstehenden Unterricht Verfahren zur rechnerischen Bestimmung lokaler Extrema mittels Differenzialrechnung eingeführt werden.
* '''Monotonie und Ableitung'''. Im Lernvideo wird ein Satz über den Zusammenhang: Monotonie und Ableitung in offenen Intervallen exemplarisch erarbeitet.
* '''Lokale Extrema und VZW-Kriterium'''. Im Lernvideo werden der Satz vom Vorzeichenwechselkriterium (VZW-Kriterium) und seine Anwendung auf differenzierbare Funktionen zum Nachweis lokaler Extrema erläutert. Dabei werden Begriffe, wie Extremum, Extremstelle, lokales Maximum, lokales Minimum, Hoch- und Tiefpunkte in Anwendungen beschrieben.
* '''Extremwertaufgabe (ohne Nebenbedingungen)'''. Im Lernvideo wird eine einfache Extremwertaufgabe, ohne Nebenbedingung, in 4 Schritten rechnerisch gelöst. Animationen unterstützen die Anschauung zur Lösungsfindung. Für das weitere Üben zum Lösen von Extremwertaufgaben wird die Ausgangsaufgabe variiert, indem der rechte Rand des Definitionsbereiches der Zielfunktion verändert wird. Dabei entstehen lokale Extrema, die in der Ausgangsaufgabe noch nicht existent waren.


====Exponentialfunktionen und ganzrationale Funktionen====
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Abstand von zwei parallelen Geraden'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-abstand-von-zwei-parallelen-geraden/ Applet].
* '''Exponentialfunktionen'''. Im Lernvideo werden die Eigenschaften Monotonie und Nicht-Existenz von Nullstellen von Exponentialfunktionen zur Basis a mit f(x) = a^x  aus Sätzen (mit Beweis) deduziert. Außerdem wird illustriert, warum die x-Achse eine Asymptote ist. Am Ende des Lernvideos werden zwei einfache Aufgaben gelöst, um den Umgang mit der Funktionsgleichung f(x) = c * a^x  zu festigen.
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Abstand von Punkt und Gerade'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-abstand-von-punkt-und-gerade/ Applet].
* '''Polynomdivision'''. Im Lernvideo werden die Polynomdivision und das Horner-Schema als alternative Rechenverfahren vorgestellt und in ihrer Ausführung erläutert. Computeralgebrasystem- (CAS) und Tabellenkalkulations-Applikationen (TK) unterstützen das Üben zum Erlernen beider Routinen.
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Berechnung mit dem Satz des Pythagoras I'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnung-mit-dem-satz-des-pythagoras-i/ Applet].
* '''Nullstellenberechnung ganzrationaler Funktionen'''. Im Lernvideo wird eine Strategie exemplarisch vorgestellt, um reelle Nullstellen aus ganzrationalen Funktionen, die mindestens eine ganzzahlige Nullstelle enthalten, rechnerisch bestimmen zu können. Dabei werden mathematische Werkzeuge, wie der Fundamentalsatz der Algebra und der Satz über das Abspalten von Linearfaktoren angewendet. Die Polynomdivision oder das Horner-Schema werden hier als bekannt vorausgesetzt.
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Berechnung mit dem Satz des Pythagoras II'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnung-mit-dem-satz-des-pythagoras-ii/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Berechnung mit dem Satz des Pythagoras III'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnung-mit-dem-satz-des-pythagoras-iii/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Schnittpunkte von Ortslinien konstruieren'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-schnittpunkte-von-ortslinien-konstruieren/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Ortslinie Mittelsenkrechte'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-ortslinie-mittelsenkrechte/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Ortslinie Winkelhalbierende'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-ortslinie-winkelhalbierende/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Wo liegen alle Punkte, welche von der Geraden f den festen Abstand 3 cm haben?''' Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-wo-liegen-alle-punkte-welche-von-der-geraden-f-den-festen-abstand-3-cm-haben/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Wo liegen alle Punkte, welche von den beiden parallelen Gerade g und h den gleichen Abstand haben?''' Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-wo-liegen-alle-punkte-welche-von-den-beiden-parallelen-gerade-g-und-h-den-gleichen-abstand-haben/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Wo liegen alle Punkte, welche von einem Punkt P den festen Abstand 3 cm haben?''' Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-wo-liegen-alle-punkte-welche-von-einem-punkt-p-den-festen-abstand-3-cm-haben/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Quadratwurzel und reelle Zahlen, '''Tabellenkalkulation (TK) – Heronverfahren'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-tabellenkalkulation-tk-heronverfahren/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Physikalisch-mathematische Anwendungen, '''Interpretation eines v-t-Diagramms'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-interpretation-eines-v-t-diagramms/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Kongruenz und Ähnlichkeit, '''Umkehrung Strahlensatz'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-umkehrung-strahlensatz/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Systeme linearer Gleichungen, '''Einsetzungsverfahren mit Anweisungen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-einsetzungsverfahren-mit-anweisungen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Physikalisch-mathematische Anwendungen, '''Durchschnitts- und Augenblicksgeschwindigkeit'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-durchschnittsgeschwindigkeit-und-augenblicksgeschwindigkeit/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Rechnen mit rationalen Zahlen, '''Termwerte berechnen durch Ersetzen von Variablen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-termwerte-berechnen-durch-ersetzen-von-variablen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Rechnen mit rationalen Zahlen, '''Terme mit einer Variablen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-terme-mit-einer-variablen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Physikalisch-mathematische Anwendungen, '''Kräfteaddition – Kräfteparallelogramm'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-kraefteaddition-kraefteparallelogramm/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, '''Lineare Tabelle – durch interaktives Rechnen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lineare-tabelle-durch-interaktives-rechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, '''Lineare Tabelle – durch direktes Rechnen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lineare-tabelle-durch-direktes-rechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, '''Exponentielle Tabelle – durch direktes Rechnen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-exponentielle-tabelle-durch-direktes-rechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, '''Exponentielle Tabelle – durch iteratives Rechnen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-exponentielle-tabelle-durch-iteratives-rechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, '''Beschränkte Wachstumstabelle – durch iteratives Rechnen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-beschraenkte-wachstumstabelle-durch-iteratives-rechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Tangens am rechtwinkligen Dreieck'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-tangens-am-rechtwinkligen-dreieck/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Sinus und Kosinus am rechtwinkligen Dreieck'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-sinus-und-kosinus-am-rechtwinkligen-dreieck/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Der Satz des Pythagoras im Quader'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-der-satz-des-pythagoras-im-quader/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Der Satz des Pythagoras'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-der-satz-des-pythagoras/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Gleichungen, Löse eine einfache Verhältnisgleichung nach x auf. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-loese-eine-einfache-verhaeltnisgleichung-nach-x-auf/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Kongruenz und Ähnlichkeit, Zentrische Streckung eines Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-zentrische-streckung-eines-dreiecks/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Kongruenz und Ähnlichkeit, Strahlensatz (X-Figur). Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-strahlensatz-x-figur/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Kongruenz und Ähnlichkeit, Strahlensatz (V-Figur). Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-strahlensatz-v-figur/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Kongruenz und Ähnlichkeit, Figur vergrößern nach Maßstab. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-figur-vergroessern-nach-massstab/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Kongruenz und Ähnlichkeit, Der Pantograph (Storchschnabel) zum Vergrößern. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-der-pantograph-storchschnabel-zum-vergroessern/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Daten und Zufall, Beurteilende Statistik, Hypothesentest (Signifikanztest). Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-hypothesentest-signifikanztest/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Systeme linearer Gleichungen, Schnittpunkt zweier Geraden berechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-schnittpunkt-zweier-geraden-berechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen,  Quadratische Funktionen und Gleichungen, Exaktes Lösen gemischt quadratischer Gleichungen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-exaktes-loesen-gemischt-quadratischer-gleichungen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen,  Quadratische Funktionen und Gleichungen, Exaktes Lösen von reinquadratischen Gleichungen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-exaktes-loesen-von-reinquadratischen-gleichungen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Dreieck aus Höhe und Winkel konstruieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-dreieck-aus-hoehe-und-winkel-konstruieren/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Mittelparallele – Ortslinie. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-mittelparallele-ortslinie/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen,  Quadratische Funktionen und Gleichungen, Optimierungsaufgabe zum Einstieg. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-optimierungsaufgabe-zum-einstieg/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen,  Quadratische Funktionen und Gleichungen, Der Scheitelpunkt S als Extremum. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-der-scheitelpunkt-s-als-extremum/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen,  Quadratische Funktionen und Gleichungen, Quadratische Funktionen in der Form y=a(x+d)²+e. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-quadratische-funktionen-in-der-form-yaxd%C2%B2e/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen,  Quadratische Funktionen und Gleichungen, Spezielle quadratische Funktion. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-spezielle-quadratische-funktion/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen,  Quadratische Funktionen und Gleichungen, Normalparabel verschieben. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-normalparabel-verschieben/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen,  Quadratische Funktionen und Gleichungen, Vom Quadrat zur Normalparabel. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-vom-quadrat-zur-normalparabel/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Funktionen, Lineare Funktionen darstellen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lineare-funktionen-darstellen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Funktionen, Punktprobe. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-punktprobe/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Terme und Gleichungen. Erste binomische Formel – geometrisch interpretiert. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-erste-binomische-formel-geometrisch-interpretiert/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Terme und Gleichungen. Anwendung des Distributivgesetzes, Teil 2. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-anwendung-des-distributivgesetzes-teil-2/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Terme und Gleichungen. Anwendung des Distributivgesetzes, Teil 1. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-anwendung-des-distributivgesetzes-teil-1/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Quadratwurzel und reelle Zahlen, Quadratwurzeln vereinfachen und approximieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-quadratwurzeln-vereinfachen-und-approximieren/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Proportionale und antiproportionale Funktionen, Funktionen mit der Gleichung y=m*x. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-funktionen-mit-der-gleichung-y-mx/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Proportionale und antiproportionale Funktionen, Funktionen mit der Gleichung y=m/x. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-funktionen-mit-der-gleichung-y-mx-2/ Applet].


====Gleichungssysteme====
====2016====
* '''Graphen linearer Zuordnungen zeichnen'''. In diesem Lernvideo wird das Vorgehen zum kontrollierten Üben zum Zeichnen von Graphen linearer Zuordnungen mit einem GeoGebra-Arbeitsblatt sukzessive demonstriert. Lösungstexte und zugehörige Geraden mit Steigungsdreieck werden über Kontrollkästchen im Einzelnen sichtbar gemacht. Schieberegler können zum Variieren von Zahlen genutzt werden.
* '''Zwei lineare Zuordnungen kreuzen sich'''. Im Lernvideo wird das Problem, wie man die Koordinaten eines Geradenschnittpunktes aus zwei linearen Gleichungen bestimmen kann, in GeoGebra entwickelt und durch eine Aufgabe konkretisiert. Die rechnerische Lösung der Aufgabe steht dabei im Mittelpunkt der Illustrationen. Der Ansatz zur Gleichsetzung der beiden „y-Terme“ wird in einer Analyse zur Aufgabe anschaulich begründet und durch Äquivalenzumformgen an einer linearen Gleichung mit nur einer Variablen zur Lösung verwandelt. Die rechnerische Probe an zwei linearen Gleichungen mit zwei Variablen zeigt die Übereinstimmung der beiden „y-Werte“.
* '''LGS (2x2) graphisch lösen'''. Im Lernvideo wird gezeigt, wie man in 5 Schritten die Standardaufgabe: „Löse ein lineares Gleichungssystem vom Typ (2 kreuz 2) auf graphischen Wege“ erfüllen kann. Ein dynamisches GeoGebra-Arbeitsblatt unterstützt die Kontrolle der Schritte 1 bis 4 durch entsprechende Interaktivität.  Die Handhabung des GeoGebra-Arbeitsblattes wird ausführlich demonstriert.
* '''Einsetzungsverfahren'''. Im Lernvideo wird das Einsetzungsverfahren zum Lösen linearer Gleichungssysteme vom Typ (2x2) an zwei Beispielen erläutert. In der CAS- und Graphikansicht von GeoGebra werden die interaktiven Abläufe für die Kontrollrechnungen zur Existenz und die Eindeutigkeit der Lösung demonstriert.
* '''Additionsverfahren'''. Im Lernvideo wird an zwei Beispielen das Additionsverfahren zum Lösen linearer Gleichungssysteme vom Typ (2x2) erläutert. Dabei wird herausgearbeitet, wie man nach entsprechenden Umformungen an den linearen Gleichungen das Additionsverfahren vorteilhaft anwenden kann. GeoGebra wird zur Beantwortung der Existenz und der Eindeutigkeit der Lösung als Kontrollwerkzeug eingesetzt.
* '''Lösungsmengen von LGS (2x2)'''. Im Lernvideo wird zu Anfang ein LGS vom Typ (2x2) mittels Einsetzungsverfahren ohne Taschenrechner gelöst. Die vermutlich existierende Lösung wird durch eine Probe am LGS bewiesen. Die Lösungsmenge wird notiert. Weitere Arten von Lösungsmengen werden in Geogebra exemplarisch beschrieben. Am Ende folgt eine Übersicht als Zusammenfassung.


====Kongruenz====
* [[Frank Schumann|Schumann, F.]] (2016). Einführung in die Differenzial- und Integralrechnung, Differenzenquotienten berechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-differenzenquotienten-berechnen/ Applet].
* '''Kongruente Figuren aus Bewegungen'''. Im Lernvideo wird der Begriff „kongruente Figuren“ mittels des vorangestellten Begriffs der Bewegung exemplarisch eingeführt. Die Eigenschaften der Längen- und Winkeltreue bei Bewegungen werden in GeoGebra dynamisch an Vierecken veranschaulicht. Weitere Eigenschaften werden verbal beschrieben.
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Einteilung der Dreiecke. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-einteilung-der-dreiecke/ Applet].
* '''Kongruenzsatz sws'''. Im Lernvideo wird der Kongruenzsatz sws über eine Schnittvorlage für kongruente Dreiecke eingeführt und mit dem Bewegungsbegriff für kongruente Figuren bewiesen. Darauf aufbauend wird das gleichnamige Konstruktionsprinzip vorgestellt und als Zirkel-Lineal-Konstruktion beschrieben.
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Funktionen, Steigungen oder Gefälle im Gelände. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-steigungen-oder-gefaelle-im-gelaende/ Applet].
* '''Eindeutig konstruierbar?'''. Im Lernvideo werden zwei Dreiecke aus jeweils drei Bestimmungsstücken mit Zirkel und Lineal konstruiert. Die Frage: Ist die Konstruktion eindeutig? wird zum tragenden Thema. Die Bedeutung der genauen Formulierung zum Kongruenzsatz SsW wird in Bezug auf die Frage zur Eindeutigkeit durch eine Animation in GeoGebra anschaulich unterstützt. Warum es keinen Kongruenzsatz „WWW“ (Übereinstimmung in drei Winkeln) gibt, wird  am Ende des Lernvideos exemplarisch untersucht.
* [[Frank Schumann|Schumann, F.]] (2016). Einführung in die Differenzial- und Integralrechnung, Flächenberechnung unterhalb eines Graphens. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-flaechenberechnung-unterhalb-eines-graphens/ Applet].
* '''Figuren im Raum'''. Im Lernvideo werden Längen von Strecken, die sich in räumlichen Figuren befinden, durch maßstabsgetreues Zeichnen bestimmt. Dabei werden drei wichtige Hilfsmittel zum Lösen geometrischer Probleme aus der Raumgeometrie vorgestellt: rechtwinklige Stützdreiecke, senkrechte Parallelprojektion  und Körpernetze.
* [[Frank Schumann|Schumann, F.]] (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Flächeninhalt eines Trapezes. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-flaecheninhalt-eines-trapezes/ Applet].
* '''Testen, Ordnen und Vermuten'''. Im Lernvideo werden an einem Geometriebeispiel typische Tätigkeiten eines Mathematikers bzw. einer Mathematikerin zur Erkenntnisfindung illustriert. Dabei handelt es sich im Speziellen um die Tätigkeiten: Testen, Ordnen mittels Fallunterscheidung, Argumentieren und Vermuten.
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Terme konstruieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applets-terme-konstruieren/ GeoGebraBuch].
* '''Beweisen mit den Kongruenzsätzen'''. Im Lernvideo wird in einem gleichseitigen Dreieck ein Innendreieck festgelegt. Von diesem wird behauptet, dass es auch gleichseitig sei. Es folgt ein ausführlicher Beweistext mit Übungen. Jeder Schritt soll schließlich verstanden und an einer Skizze nachvollzogen werden. Der Beweistext dient als exemplarische Vorlage für andere Beweise, die im Unterricht geübt werden. Dieser Beweistext ist vor den Übungen im Unterricht zu lernen.
** Ein Term für den Umfang
** Terme und Termwerte
** Welcher Term wird hier konstruiert? (Aufgabe 1)
** Welcher Term wird hier konstruiert? (Aufgabe 2)
** Welcher Term wird hier konstruiert? (Aufgabe 3)
** Welcher Term wird hier konstruiert? (Aufgabe 4)
* [[Frank Schumann|Schumann, F.]] (2016). Quadratwurzel und reelle Zahlen, Quadrieren rationaler Zahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-quadrieren-rationaler-zahlen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratwurzel und reelle Zahlen, Zwei Zuordnungen: Quadrieren und Wurzelziehen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-zwei-zuordnungen-quadrieren-und-wurzelziehen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratwurzel und reelle Zahlen, Flächeninhalt eines Quadrates verändern. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-flaecheninhalt-eines-quadrates-veraendern/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Definieren und Ordnen und Beweisen, Beweisen mit Hilfslinien. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applets-beweisen-mit-hilfslinien/ GeoGebraBuch].
** Konstruktion - Mittellinie im Dreieck
** Beweis - Konstruktion - Mittenviereck.
* [[Frank Schumann|Schumann, F.]] (2016). Definieren und Ordnen und Beweisen, Beweisen mit Variablen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applets-beweisen-mit-variablen/ GeoGebraBuch]:
** Zahlenmengen durch variable Terme beschreiben
** Voraussetzung und Behauptung mit Variablen
** Teilbarkeit durch 3 schlussfolgern.
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Tilgungsplan für einen Kredit. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-tilgungsplan-fuer-einen-kredit/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Daten und Zufall, Wahrscheinlichkeiten bestimmen durch Simulieren. Empirisches Gesetz der großen Zahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-empirisches-gesetz-der-grossen-zahlen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Proportionale und antiproportionale Funktionen, Volumen in Abhängigkeit der Höhe einer Pyramide. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-volumen-in-abhaengigkeit-der-hoehe-einer-pyramide/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Grundwert bei prozentualer Veränderung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-grundwert-bei-prozentualer-veraenderung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Prozentsatz bei prozentualer Veränderung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-prozentsatz-bei-prozentualer-veraenderung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Prozentwert bei prozentualer Veränderung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-prozentwert-bei-prozentualer-veraenderung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratwurzel und reelle Zahlen, Quadratwurzeln aus 0 bis 100 auf der Zahlengeraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-quadratwurzeln-aus-0-bis-100-auf-der-zahlengeraden/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratwurzel und reelle Zahlen, Rationale Zahlen auf der Zahlengeraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-rationale-zahlen-auf-der-zahlengeraden/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Flächeninhalt eines Parallelogramms. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-flaecheninhalt-eines-parallelogramms/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Flächeninhalt eines Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-flaecheninhalt-eines-dreiecks/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Daten und Zufall, Beschreibende Statistik, Urliste statistisch auswerten. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-urliste-statistisch-auswerten/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Daten und Zufall, Beschreibende Statistik, Urliste-Häufigkeitstabelle-Kreisdiagramm. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-urliste-haeufigkeitstabelle-kreisdiagramm/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Flächeninhalte von Rechtecken. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-flaecheninhalte-von-rechtecken/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Umfang eines Polygons. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-umfang-eines-polygons/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Umfang eines Rechtecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-umfang-eines-rechtecks/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Ausklammern und Dezimalzahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-ausklammern-und-dezimalzahlen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Ausmultiplizieren und Dezimalzahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-ausmultiplizieren-und-dezimalzahlen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Anteile in Prozent schreiben. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-anteile-in-prozent-schreiben/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Prozente – Anteilsberechnungen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-prozente-anteilsberechnungen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Terme und Gleichungen, Ausmultiplizieren oder Faktorisieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-ausmultiplizieren-oder-faktorisieren/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Distributivgesetz für positive rationale Zahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-distributivgesetz-fuer-positive-rationale-zahlen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Subtraktion rationaler Zahlen in Bruchform. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-subtraktion-rationaler-zahlen-in-bruchform/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Proportionale und antiproportionale Funktionen, Mit dem Dreisatz rechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-mit-dem-dreisatz-rechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Division rationaler Zahlen in Bruchform. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-division-rationaler-zahlen-in-bruchform/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Multiplikation rationaler Zahlen in Bruchform. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-multiplikation-rationaler-zahlen-in-bruchform/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Ordnung rationaler Zahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-ordnung-rationaler-zahlen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Brüche gleichnamig machen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-brueche-gleichnamig-machen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Subtraktion ganzer Zahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-subtraktion-ganzer-zahlen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Addition ganzer Zahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-addition-ganzer-zahlen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratwurzel und reelle Zahlen, Eine irrationale Zahl auf der Zahlengeraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-eine-irrationale-zahl-auf-der-zahlengeraden/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Kürzen echter Brüche. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-kuerzen-echter-brueche/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Unterjährige Verzinsung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-unterjaehrige-verzinsung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Gleichungen, Lineare Gleichung in zwei Schritten lösen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lineare-gleichung-in-zwei-schritten-loesen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Funktionen, Funktionsgleichung - Wertetabelle - Graph. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-funktionsgleichung-wertetabelle-graph/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Kongruenz und Ähnlichkeit, Turmhöhe mittels maßstäblicher Zeichnung bestimmen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-turmhoehe-mittels-massstaeblicher-zeichnung-bestimmen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Kongruenz und Ähnlichkeit, Wahre Länge einer Raumdiagonale. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-wahre-laenge-einer-raumdiagonale/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Kongruenz und Ähnlichkeit, Kongruenzbeweis: Quadrat im Quadrat. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-kongruenzbeweis-quadrat-im-quadrat/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Kongruenz und Ähnlichkeit, Quadratische Pyramide mit Stützdreieck. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-quadratische-pyramide-mit-stuetzdreieck/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Kongruenz und Ähnlichkeit, Kongruente Figuren aus einer Bewegung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-kongruente-figuren-aus-einer-bewegung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Kongruenz und Ähnlichkeit, Konstruktion nach KGS sss. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-konstruktion-nach-kgs-sss/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Kongruenz und Ähnlichkeit, Konstruktion nach KGS wsw. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-konstruktion-nach-kgs-wsw/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Kongruenz und Ähnlichkeit, Konstruktion nach KGS sws. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-konstruktion-nach-kgs-sws/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Kongruenz und Ähnlichkeit, Konstruktion nach KGS Ssw. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-konstruktion-nach-kgs-ssw/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Funktionen, Lagebeziehungen von Geraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lagebeziehungen-von-geraden/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Proportionale und antiproportionale Funktionen, Dreisatz bei proportionaler Zuordnung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-dreisatz-bei-proportionaler-zuordnung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Proportionale und antiproportionale Funktionen, Dreisatz bei antiproportionaler Zuordnung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-dreisatz-bei-antiproportionaler-zuordnung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratwurzel und reelle Zahlen, Quadrieren und Wurzelziehen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-quadrieren-und-wurzelziehen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratwurzel und reelle Zahlen, Quadrat mit doppelt so großem Flächeninhalt. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-quadrat-mit-doppelt-so-grossem-flaecheninhalt/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratwurzel und reelle Zahlen, Seitenlänge eines Quadrates messen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-seitenlaenge-eines-quadrates-messen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Physikalisch-mathematische Anwendungen, Punktwolke mit Ausgleichsgerade. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-punktwolke-mit-ausgleichsgerade/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Systeme linearer Gleichungen, Gleichung mit zwei Variablen lösen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-gleichung-mit-zwei-variablen-loesen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Die Steigung m einer Geraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-die-steigung-m-einer-geraden/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Eine Größe Y wächst linear. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-eine-groesse-y-waechst-linear/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Ursprungsgerade in y-Richtung verschieben. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-ursprungsgerade-in-y-richtung-verschieben/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Inkreis eines Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-inkreis-eines-dreiecks/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Terme und Gleichungen, Eine Gleichung bzw. Ungleichung lösen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-eine-gleichung-bzw-ungleichung-loesen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen. Lineare Funktionsgleichung gesucht. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lineare-funktionsgleichung-gesucht/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Physikalisch-mathematische Anwendungen. Zwei Diagramme für eine gleichförmige Bewegung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-zwei-diagramme-fuer-eine-gleichfoermige-bewegung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Physikalisch-mathematische Anwendungen. s-t-Diagramm einer gleichförmigen Bewegung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-s-t-diagramm-einer-gleichfoermigen-bewegung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Daten und Zufall, Wahrscheinlichkeiten bestimmen durch Simulieren. Alles Zufall?. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-alles-zufall/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Daten und Zufall, Wahrscheinlichkeiten bestimmen durch Simulieren. MCM: Approximierte Bestimmung der Zahl π. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-mcm-approximierte-bestimmung-der-zahl-%CF%80/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Daten und Zufall, Wahrscheinlichkeiten bestimmen durch Simulieren. Simulation: Ziehen mit Zurücklegen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-simulation-ziehen-mit-zuruecklegen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Daten und Zufall, Wahrscheinlichkeiten bestimmen durch Simulieren. Simulation: Ziehen ohne Zurücklegen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-simulation-ziehen-ohne-zuruecklegen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Daten und Zufall, Wahrscheinlichkeiten bestimmen durch Simulieren. Testantworten nur per Zufall. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-testantworten-nur-per-zufall/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Physikalisch-mathematische Anwendungen. Geschwindigkeit aus Weg und Zeit berechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-geschwindigkeit-aus-weg-und-zeit-berechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Physikalisch-mathematische Anwendungen. Weg aus Geschwindigkeit und Zeit berechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-weg-aus-geschwindigkeit-und-zeit-berechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Physikalisch-mathematische Anwendungen. Zeit aus Geschwindigkeit und Weg berechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-zeit-aus-geschwindigkeit-und-weg-berechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratische und andere Funktionen. Verändern des Funktionsterms mit drei Parametern. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-veraendern-des-funktionsterms-mit-drei-parametern/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratische und andere Funktionen. Strecken von Funktionsgraphen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-strecken-von-funktionsgraphen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratische und andere Funktionen. Verschieben des Graphen in y-Richtung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-verschieben-des-graphen-in-y-richtung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratische und andere Funktionen. Verschieben des Graphen in x-Richtung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-verschieben-des-graphen-in-x-richtung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratische und andere Funktionen. Steigung einer Geraden g(AB) berechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-steigung-einer-geraden-g-berechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Trigonometrische Funktionen, Graph der Kosinusfunktion. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-graph-der-kosinusfunktion/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Trigonometrische Funktionen, Graph der Sinusfunktion. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-graph-der-sinusfunktion/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Trigonometrische Funktionen, Trigonometrische Funktionen am Einheitskreis. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-trigonometrische-funktionen-am-einheitskreis/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Berechnung des Grundwertes G. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnung-des-grundwertes-g/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Berechnung des Prozentsatzes p. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnung-des-prozentsatzes-p/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Berechnung des Prozentwertes W. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnung-des-prozentwertes-w/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Eine Senkung um p% bedeutet…. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-eine-senkung-um-p-bedeutet/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Eine Steigerung um p% bedeutet…. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-eine-steigerung-um-p-bedeutet/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Prozentrechnung und Zinsrechnung, Zinseszinsrechnung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-zinseszinsrechnung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Rechnen mit rationalen Zahlen, Addition rationaler Zahlen in Bruchform. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-addition-rationaler-zahlen-in-bruchform/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Bildentstehung an der Sammellinse. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-bildentstehung-an-der-sammellinse/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Konstruktion eines gleichschenkligen Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-konstruktion-eines-gleichschenkligen-dreiecks/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Konstruktion eines gleichseitigen Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-konstruktion-eines-gleichseitigen-dreiecks/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Mittelpunkt eines Kreisbogens konstruieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-mittelpunkt-eines-kreisbogens-konstruieren/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Mittelsenkrechte an zwei berührenden Kreisen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-mittelsenkrechte-an-zwei-beruehrenden-kreisen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Mittelsenkrechte einer Strecke. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-mittelsenkrechte-einer-strecke/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Satz des Thales. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-satz-des-thales/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Senkrechte zu einer Geraden durch einen Punkt. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-senkrechte-zu-einer-geraden-durch-einen-punkt/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Von der Sekante zur Tangente. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-von-der-sekante-zur-tangente/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Tangente am Kreis konstruieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-tangente-am-kreis-konstruieren/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Tangenten von außen konstruieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-tangenten-von-aussen-konstruieren/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Umkreismittelpunkt D eines Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-umkreismittelpunkt-d-eines-dreiecks/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Winkel an Kreuzungen und Parallelen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-winkel-an-kreuzungen-und-parallelen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Winkelhalbierende von zwei schneidenden Geraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-winkelhalbierende-von-zwei-schneidenden-geraden/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Winkelsumme im Dreieck. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-winkelsumme-im-dreieck/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Beziehungen in geometrischen Figuren, Zwei Mittelsenkrechten kreuzen sich. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-zwei-mittelsenkrechten-kreuzen-sich/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Systeme linearer Gleichungen, Einsetzungsverfahren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-einsetzungsverfahren/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Systeme linearer Gleichungen, Lineare Gleichungen lösen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lineare-gleichungen-loesen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Systeme linearer Gleichungen, Lineare Gleichungen mit zwei Variablen, gesucht x. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lineare-gleichungen-mit-zwei-variablen-gesucht-x/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Systeme linearer Gleichungen, Lineare Gleichungen mit zwei Variablen, gesucht y. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lineare-gleichungen-mit-zwei-variablen-gesucht-y/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Systeme linearer Gleichungen, Lösen eines LGS (2×2). Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-loesen-eines-linearen-gleichungssystems-2x2/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Systeme linearer Gleichungen, Zeichnerisches Lösen eines LGS. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-zeichnerisches-loesen-eines-linearen-gleichungssystems/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratische und andere Funktionen, Scheitelpunktsberechnung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-scheitelpunktsberechnung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Quadratische und andere Funktionen, Von der Scheitelform zum Scheitelpunkt. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-von-der-scheitelform-zum-scheitelpunkt/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Umfang eines Kreises durch Abrollen eines Fadens. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-umfang-eines-kreises-durch-abrollen-eines-fadens/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Definieren und Ordnen und Beweisen, Das Haus der Vierecke. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-das-haus-der-vierecke/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Anwendung der abc-Lösungsformel mit Diskriminante. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-anwendung-der-abc-loesungsformel-mit-diskriminante/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Aufstellen der quadratischen Funktionsgleichung: f(x)=ax²+bx+c. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-aufstellen-der-quadratischen-funktionsgleichung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Einfluss der Parameter: a, b und c auf Form und Lage der Parabel. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-einfluss-der-parameter-abc-auf-form-und-lage-der-parabel/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Gerade zur Gleichung y=mx+c. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-gerade-zur-gleichung-y-mx-c/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Von der Geraden zur Gleichung y=mx+n. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-von-der-geraden-zur-gleichung-ymxn/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Von der Ursprungsgerade zur Gleichung y=mx. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-von-der-ursprungsgerade-zur-gleichung-ymx/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Graphisches Lösen quadratischer Gleichungen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-graphisches-loesen-quadratischer-gleichungen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Verallgemeinerung bei Funktionen und Gleichungen, Zu den Lösungen die passende Gleichung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-zu-den-loesungen-die-passende-gleichung/ Applet].
* [[Frank Schumann|Schumann, F.]] (2016). Winkel messen und zeichnen, Winkelweite mit dem Geodreieck messen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-winkelweite-mit-dem-geodreieck-messen/ Applet].


====Kreisberechnungen und Körperberechnungen====
====2015====
* '''Kreiszahl Pi approximieren'''. Im Lernvideo wird die Kreiszahl Pi approximiert. Zunächst wird die Lösungsidee für die Approximation geometrisch durch Dynamisierung regelmäßiger Polygone am Kreis veranschaulicht. Anschließend werden analytische Ausdrücke zur Berechnung von Polygonumfängen ermittelt und zur Approximation der Zahl Pi genutzt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Kreisteile'''. Im Lernvideo werden in GeoGebra Abhängigkeiten von Größen beschrieben, um Gleichungen herzustellen, mit deren Hilfe man die Bogenlänge eines Kreisbogens bzw. den Flächeninhalt eines Kreissektors berechnen kann.
* '''Kreistangente'''. Im Lernvideo geht es im Wesentlichen um Kreistangenten. Die Begriffe Passante, Sekante, Kreistangente und Zentrale werden zu Beginn des Lernvideo definiert. Es werden die drei Fragen: 1. Was ist eine Kreistangente? 2. Wie konstruiert man mit Z&L eine Kreistangente in einem Berührpunkt? 3. Wie konstruiert man mit Z&L eine Kreistangente von einem Punkt P, der außerhalb eines Kreises liegt? beantwortet und begründet. Am Ende des LV werden drei Sätze über Kreistangenten formuliert, die im Wesentlichen auf Symmetrieeigenschaften beruhen. Hierzu wird von mir die Mathematiksoftware GeoGebra genutzt.


====Lineare und quadratische Funktionen====
* [[Frank Schumann|Schumann, F.]] (2015). Quadratische und andere Funktionen. Von der Parabel zur Gleichung y = ax². Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-von-der-parabel-zur-gleichung-yax%C2%B2/ Applet].
* '''Proportionalität von Masse und Volumen eines Körpers'''. Im Lernvideo wird eine Aufgabe aus dem Anfangsunterricht Physik besprochen. Es geht dabei um den proportionalen Zusammenhang zwischen Masse und Volumen eines Körpers (homogene Masseverteilung sei vorausgesetzt). Es wird einerseits eine Prüffrage gestellt: Ob ein gemessener Körper aus Aluminium besteht oder nicht und zum anderen um die Erzeugung von Wertepaaren deren Punkte auf dem Graphen einer proportionalen Funktion und somit Körper aus Aluminium repräsentieren. Dabei wird der Aufbau der Funktionsgleichung einer proportionalen Funktion allgemein formal beschrieben.
* [[Frank Schumann|Schumann, F.]] (2015). Terme und Gleichungen. Klammere aus. Multipliziere aus. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-klammere-aus/ Applet].
* '''Parameter einer linearen Funktion'''. Im Lernvideo werden die beiden Parameter: „Steigung“ und „Ordinatenabschnitt“ linearer Funktionen sowie der Begriff „allgemeine Form linearer Funktionsgleichungen“ eingeführt. Es folgen zwei Aufgaben zur Untersuchung des Einflusses der beiden Parameter m und n auf den Graphen der jeweiligen linearen Funktionen. GeoGebra-Arbeitsblätter unterstützen mit ihren interaktiven Anwendungsmöglichkeiten die Lösungen der beiden experimentellen Aufgaben.
* [[Frank Schumann|Schumann, F.]] (2015). Terme und Gleichungen. Multipliziere aus. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-multipliziere-aus/ Applet].
* '''Zuordnung f: f(x) = x²'''. Im Lernvideo soll der Graph einer einfachen quadratischen Funktion in ein rechtwinkliges Koordinatensystem gezeichnet werden. Die Graphenpunkte werden aus einer Wertetabelle entnommen. Es folgen Tipps zum freihändigen Zeichnen des Graphen.
* '''Normalparabel im kartesischen Koordinatensystem'''. Im Lernvideo (ohne Ton) soll ein kleiner mathematischer Aufsatz in Anlehnung zum Thema: „Normalparabel zeichnen“ verfasst werden. Zwei Aufgaben und drei Animationssequenzen unterstützen den Aufbau des Aufsatzes.
* '''Eine spezielle quadratische Funktion'''. Im Lernvideo wird die quadratische Funktion mit der Gleichung  y = a* x^2 behandelt. Es werden 4 Eigenschaften der Funktion genannt.
* '''Normalparabel verschieben'''. Im Lernvideo wird die Normalparabel mit der Gleichung y=x^2 in einem rechtwinkligen Koordinatensystem in x- und y-Richtung verschoben. Es wird der Zusammenhang zwischen den Koordinaten des Scheitelpunktes der verschobenen Normalparabel und der zugehörigen Funktionsgleichung in Scheitelpunktsform induktiv verallgemeinert.
* '''Scheitelform und Normalform'''. Im Lernvideo wird an zwei Beispielen erläutert, wie man vorgehen kann, um aus der Normalform y = x^2+px+q die Scheitelform y = (x+d)^2+e (auch Scheitelpunktsform genannt) zu berechnen. Dabei wird die Normalform auf die Scheitelform zurückgeführt.
* '''Optimierungsaufgabe'''. Im Lernvideo wird eine Optimierungsaufgabe exemplarisch vorgestellt. Durch Berechnung des Scheitelpunktes S einer quadratischen Funktion wird die Problemaufgabe (ohne Ableiten) gelöst.
* '''Drei Punkte auf einer Parabel'''. Im Lernvideo wird gezeigt, wie man eine Gleichung einer quadratischen Funktion in Allgemeiner Form berechnen kann, wenn drei Parabelpunkte bekannt sind.
* '''Nullstellen quadratischer Funktionen'''. Im Lernvideo wird der Begriff Nullstelle einer quadratischen Funktion exemplarisch eingeführt. Die Bestimmung von Nullstellen erfolgt sowohl graphisch als auch rechnerisch (ohne Lösungsformel).
* '''Herleiten der p-q-Lösungsformel'''. In diesem Lernvideo wird die p-q-Lösungsformel zur Bestimmung exakter Nullstellen quadratischer Funktionen mit Funktionsgleichungen in der Normalform hergeleitet.
* '''Quadratische Gleichungen lösen'''. In diesem Lernvideo werden zwei Verfahren für das Lösen einfacher quadratischer Gleichungen vorgestellt und illustriert. Dabei wird für das exakte Lösungsverfahren die p-q-Formel vorgestellt und angewendet. Beim approximierten Lösungsverfahren wird die Normalparabel mit der Geraden aus dem linearen Rest-Term geschnitten. Auf die Verwendung der Schülerschablone wird hingewiesen.


====Planimetrie====
=== Lernvideos ===
* '''Messen von Winkeln zwischen 0° und 180° mit dem Geodreieck'''. Es wird gezeigt, wie man mit Hilfe des Geodreiecks Winkel zwischen 0° und 180° messen kann. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Winkelarten und Winkelweiten'''. Zuerst werden die Winkelarten vorgstellt und dann wird gezeigt, wie man verschiedene Winkelweiten von 0° bis 360° mit Hilfe des Geodreiecks messen kann. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Ortslinien'''. Im Lernvideo werden die Eigenschaften der Ortslinien: Kreis, Mittelsenkrechte, Parallele, Mittelparallele und Winkelhalbierende verbal beschrieben und geometrisch in GeoGebra durch Punktspuren illustriert. Am Ende des Lernvideos wird eine Anwendungsaufgabe formuliert, bei der der Mittelpunkt eines Kreisbogens bestimmt werden soll. Die Lösung zu dieser Aufgabe findet man in einer GeoGebra-Datei.
* '''Grundkonstruktionen mit Zirkel und Lineal'''. Im Lernvideo werden die Grundkonstruktionen: Mittelsenkrechte, Lot fällen, Senkrechte errichten und Winkelhalbierende geometrisch und verbal beschrieben. Die Abläufe der Zirkel-Lineal-Konstruktionen werden schrittweise in GeoGebra animiert. Am Ende des Lernvideos erhalten die Schülerinnen und Schüler wertvolle Tipps für eine gute Konstruktionsbeschreibung.
* '''Konstruieren vs. Zeichnen'''. Im Lernvideo wird diskutiert, wann ein Bild aus einer Zeichnung (Verbinden von gezeichneten Punkten) oder aus einer echten Konstruktion hervorgeht. Die Entstehungsgeschichte von zwei Quadraten wird in GeoGebra ergründet. Dabei zeigt sich, dass das Konstruktionsprotokoll den Nachweis über die einzelnen Konstruktionsschritte liefern kann. Das Lernvideo schließt mit einem Merksatz ab.
* '''Konstruktion: Dreieck'''. Im Lernvideo wird das Konstruieren (Zirkel, Lineal und Geodreieck) eines Dreiecks vorgestellt. Die Lösung führt zu zwei nicht deckungsgleichen Dreiecken. Schwerpunkt des Lernvideos ist die Entwicklung der Lösung mittels einer Analyse von Schnittmengen aus Ortslinien. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Konstruktion: gleichschenkliges Dreieck'''. Im Lernvideo wird das Konstruieren (Zirkel und Lineal) eines gleichschenkligen Dreiecks vorgestellt. Die Eigenschaften des gleichschenkligen Dreiecks werden exemplarisch herausgearbeitet. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Winkel verschieben und drehen'''. Im Lernvideo werden Nebenwinkel, Scheitelwinkel, Stufenwinkel und Wechselwinkel exemplarisch eingeführt. Beziehungen von Stufenwinkel bzw. Wechselwinkel werden an parallelen Geraden untersucht und entsprechende Sätze formuliert. Auch eine Umkehrung zum Stufen- und Wechselwinkelsatz wird genannt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Entdecke einen geometrischen Satz'''. In diesem Anleitungsvideo wird den Schülerinnen und Schülern gezeigt, wie sie ein GeoGebra-Arbeitsblatt nutzen können, um eine Vermutung über die Lage eines Punktes C zu formulieren. Der Punkt C soll ein Eckpunkt eines rechtwinkligen Dreiecks ABC sein.
* '''Beweis Satz des Thales'''. Im Lernvideo wird der Satz des Thales mithilfe von drei Werkzeugen in Form mathematischer Sätze schrittweise bewiesen. Wesentliche Überlegungen werden durch Dynamisierungen in GeoGebra illustriert.
* '''Kreisteile'''. Im Lernvideo werden in GeoGebra Abhängigkeiten von Größen beschrieben, um Gleichungen herzustellen, mit deren Hilfe man die Bogenlänge eines Kreisbogens bzw. den Flächeninhalt eines Kreissektors berechnen kann.
* '''Kreistangente'''. Im Lernvideo geht es im Wesentlichen um Kreistangenten. Die Begriffe Passante, Sekante, Kreistangente und Zentrale werden zu Beginn des Lernvideo definiert. Es werden die drei Fragen: 1. Was ist eine Kreistangente? 2. Wie konstruiert man mit Z&L eine Kreistangente in einem Berührpunkt? 3. Wie konstruiert man mit Z&L eine Kreistangente von einem Punkt P, der außerhalb eines Kreises liegt? beantwortet und begründet. Am Ende des LV werden drei Sätze über Kreistangenten formuliert, die im Wesentlichen auf Symmetrieeigenschaften beruhen. Hierzu wird von mir die Mathematiksoftware GeoGebra genutzt.
* '''Satz über die Innenwinkelsumme im Dreieck (Viereck)'''. Im Lernvideo wird der Satz über die Innenwinkelsumme im Dreieck formuliert. Der Beweis wird in einem GeoGebra-Arbeitsblatt illustriert und angeleitet. Zu diesem Lernvideo gibt es ein Handout mit Lückentext (pdf-Datei, docx-Datei). In einem weiteren GeoGebra-Arbeitsblatt wird der Satz über die Innenwinkelsumme im Viereck motiviert.


====Potenzen und Logarithmen====
[[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013-2019). Mathematik visualisieren - ''152 Lernvideos für den Einsatz im Mathematikunterricht am Gymnasium''. Stuttgart, Deutschland: FSchumann.COM. Gesamtliste aller [http://mathe-innovativ.fschumann.com/imeb-in-mathe-einfach-besser/meine-lernvideos/ Lernvideos]. Gesamtlaufzeit: 31 Stunden 49 Minuten 00 Sekunden.
* '''Lernprojekt Potenzfunktionen'''. In diesem Anleitungsvideo geht es um das Lernprojekt "Eigenschaften von Potenzfunktionen". Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Berechnungen an Potenzfunktionen - Grundaufgabe 1'''. In diesem Lernvideo werden Funktionswertberechnungen an Potenzfunktionen erläutert. Dabei wird der Begriff der Monotonie von Funktionen propädeutisch durch Dynamisierung entwickelt. Der Begriff der Monotonie wird dabei nicht genannt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Berechnungen an Potenzfunktionen - Grundaufgabe 2'''. In diesem Lernvideo werden Argumentenberechnungen an Potenzfunktionen erläutert. Die Grundaufgabe 2 bereitet das graphische Lösen von Potenzgleichungen vor. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Potenzgleichungen'''. In diesem Lernvideo zeige ich, wie man einfache Potenzgleichungen der Form x^n = a (n ganzzahlig) graphisch-numerisch lösen kann. Ich empfehle, sich zuvor das Anleitungsvideo "Potenzfunktionen" und die Lernvideos "Berechnungen an Potenzfunktionen - Grundaufgaben 1 und 2" anzusehen. Hierzu wird von mir die Mathematiksoftware Geogebra mit dem CAS-Modul genutzt.
* '''Der Logarithmus als Zahl'''. In diesem Anleitungsvideo stelle ich ein GeoGebra-Arbeitsblatt vor, welches die Einführung des Logarithmus als eine Umkehrung des Potenzierens unterstützen soll. Das Arbeitsblatt soll zur Selbstkontrolle für Schülerinnen und Schüler dienen. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Vertiefende Aufgaben zu Potenzen und Logarithmen'''. In diesem Lernvideo werden drei Aufgaben zur Vertiefung der Begriffe Potenz und Logarithmus vorgestellt. In Aufgabe 1 geht es darum, ob Logarithmen rationale Zahlen darstellen. In Aufgabe 2 geht es um den Beweis eines Logarithmengesetzes und in Aufgabe 3 soll der Zusammenhang zwischen den Operationen Potenzieren, Radizieren und Logarithmieren durch Beispiele veranschaulicht werden. Dabei geht es insbesondere um den Zusammenhang von Operation und Umkehroperation.


====Problemlösen====
====2019====
* '''Halbierung eines gleichseitigen Dreiecks'''. Ein gleichseitiges Dreieck wird in zwei gleichgroße Teilflächen zerlegt, wobei die Schnittgerade der beiden Teilflächen parallel zu einer Dreiecksseite liegt. In der CAS-Ansicht wird ein nicht lineares Gleichungssystem gelöst, um den Abstand der Schnittgeraden zu einer Dreieckseite sowohl exakt als auch approximativ zu bestimmen. Die Lösung zur Aufgabe setzt folgendes Wissen voraus: Sätze am gleichseitgen Dreieck, Satz des Pythagoras, Strahlensatz, Abstand paralleler Geraden und Flächeninhaltsformeln für Dreiecke und Trapeze. Hierzu wird von mir die Mathematiksoftware Geogebra mit dem CAS-Modul genutzt.


====Prozentrechnung====
* [[Frank Schumann|Schumann, F.]] & [Carl, J. K.] (2019). Binomialverteilung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-binomialverteilung/ Lernvideo], 29:47 Minuten.
* '''Grundbegriffe der Prozentrechnung'''. Es werden die Grundbegriffe Prozentsatz, Grundwert und Prozentwert sowie die Produktgleichung W=p%*G exemplarisch eingeführt.
* [[Frank Schumann|Schumann, F.]] & [Carl, J. K.] (2019). Gemischt quadratische Gleichungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-gemischt-quadratische-gleichungen/ Lernvideo], 11:31 Minuten.
* '''Berechnung des Prozentwertes W'''. Mit der Gleichung W=p%*G wird die Grundaufgabe zur Berechnung des Prozentwertes W gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] & [Carl, J. K.] (2019). Reinquadratische Gleichungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-reinquadratische-gleichungen/ Lernvideo], 17:28 Minuten.
* '''Berechnung des Prozentsatzes p'''. Mit der Gleichung W=p%*G wird die Grundaufgabe zur Berechnung des Prozentsatzes p gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Berechnung des Grundwertes G'''. Mit der Gleichung W=p%*G wird die Grundaufgabe zur Berechnung des Grundwertes G gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Steigerung auf p%'''. Eine typische Anwendungsaufgabe zur Prozentrechnung beschäftigt sich mit dem vermehrten Grundwert. Es wird eine Aufgabe analysiert und die Bedeutung der Signalwörter "um" und "auf" erläutert und schließlich gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Senkung auf p%'''. Eine typische Anwendungsaufgabe zur Prozentrechnung beschäftigt sich mit dem verminderten Grundwert. Es wird eine Aufgabe analysiert und die Bedeutung der Signalwörter "um" und "auf" erläutert und schließlich gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.


====Punkte, Vektoren und Geraden====
====2017====
* '''Punkte im Raum (3D)'''. Im Lernvideo wird die Lage eines Raumpunktes P in einem x-y-z-Koordinatensystem beschrieben. Zusätzlich zu den Erläuterungen im Lehrbuch zum Zeichnen von Punkten mit drei Koordinaten auf Papier unterstützt dieses Video die 3D-Darstellung von Punkten und Strecken im Raum durch verschiedenartige Perspektivwechsel in GeoGebra. Es folgen Hinweise zur Lösung der Frage: Wie bestimmt man den Abstand eines Raumpunktes P zum Ursprung O des x-y-z-Koordinatensystems?
* '''Vektor'''. Im Lernvideo werden die Grundlagen für einen anschaulichen Vektorbegriff gelegt und gefestigt, wie: die Menge von Pfeilen mit gleicher Länge, gleicher Richtung und gleichem Richtungssinn … (in der Ebene), dem Ortsvektor, der Spaltenschreibweise und dem Verbindungsvektor aus zwei Punkten.
* '''Vektoraddition'''. Im Lernvideo werden die Definitionen: Vektoraddition und Nullvektor gegeben. Rechengesetze für die Vektoraddition werden durch animierte Übungen illustriert und symbolisch formuliert.
* '''S-Multiplikation'''. Im Lernvideo wird eine Definition für die S-Multiplikation eines Vektors mit einem Skalar formuliert. Es werden Rechengesetze genannt, der Begriff Linearkombination wird eingeführt und in Animationen illustriert.
* '''Geradengleichung in Parameterform'''. Im Lernvideo wird zu Beginn an einem Beispiel wiederholt, wie man eine Gleichung für eine Gerade, die in einem ebenen rechtwinkligen Koordinatensystem liegt, mittels Steigung m und Ordinatenabschnitt n bestimmt. Das bekannte Konzept versagt, wenn die Gerade sich in einem räumlichen Koordinatensystem befindet. Es werden die Begriffe Stützvektor und Richtungsvektor einer Geraden eingeführt. Mittels einer Linearkombination aus Stützvektor und Richtungsvektor wird eine vektorielle Gleichung entwickelt, die einen skalaren Parameter enthält. Es entsteht eine Parameterform für eine Gerade in der Ebene oder im Anschauungsraum.
* '''Lagebeziehung von Geraden im Anschauungsraum'''. Im Lernvideo werden Geraden im Anschauungsraum betrachtet, um ihre Lagebeziehung zu untersuchen. Dabei werden rechnerische Lösungsverfahren vorgestellt.


====Quadratwurzel====
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2017). Rechenvorteile. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-rechenvorteile-animationen/ Lernvideo], 2:09 Minuten.
* '''Wurzel aus 8'''. Im Lernvideo werden Überlegungen vorgestellt, mit denen man die Länge der Diagonale im Quadrat bestimmen kann. Die Maßzahl dieser Länge ist keine natürliche Zahl. Es ist die Zahl Wurzel aus 8. Im zweiten Teil des Lernvideos wird die Frage geklärt, ob Wurzel aus 8 eine rationale Zahl ist oder nicht. Durch die Schlussweise der Kontraposition (Fachausdruck wird im Lernvideo nicht genannt) und mittels der Primfaktorzerlegung wird die Frage, Wurzel aus 8 – rational? – hinreichend exemplarisch und allgemein geklärt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2017). Einführung in das statistische Testen von Hypothesen, Teile 1 bis 3. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-einfuehrung-in-das-statistische-testen-von-hypothesen-teile-1-bis-3/ Lernvideos], 43:42 Minuten.
* '''Wurzel aus a-Quadrat'''. Im Lernvideo wird erläutert und geometrisch argumentiert, warum die Wurzel aus a-Quadrat gleich absoluter Betrag von a ist. Eine vollständige Fallunterscheidung für die reelle Zahl a unterstützt die Gleichheit beider Werte.


====Rechnen mit natürlichen Zahlen====
====2016====
* '''Schriftliche Addition natürlicher Zahlen'''.
* '''Schriftliche Subtraktion natürlicher Zahlen'''.
* '''Schriftliche Multiplikation natürlicher Zahlen'''.
* '''Schriftliche Division natürlicher Zahlen'''. In den vier Lernvideos werden die Rechenverfahren in drei Schritten erläutert. Schritt 1: Überschlagsrechnung, Schritt 2: Schriftliches Addieren, Subtrahieren, Multiplizieren und Dividieren und Schritt 3: Ergebnis und Kontrolle (mit elektronischen Hilfsmitteln).


====Rechnen mit rationalen Zahlen====
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2016). Beweis Satz des Pythagoras. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-beweis-satz-des-pythagoras/ Lernvideo], 17:13 Minuten.
* '''Multiplikation von Bruchzahlen'''. Es wird das Thema Miltiplizieren von Brüchen aus Q behandelt. Ausgewählte Rechenaufgaben werden hierzu ausführlich gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2016). Einen Term für b entdecken. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-einen-Term-fuer-b-entdecken/ Lernvideo], 08:00 Minuten.


====Stochastik (Wahrscheinlichkeitsrechnung)====
====2015====
* '''Das Gesetz der großen Zahlen'''. Im Lernvideo werden folgende Begriffe erläutert: Zufallsversuch, Urliste, absolute Häufigkeit, Häufigkeitstabelle, relative Häufigkeit, Häufigkeitsverteilung und Histogramm. Das empirische Gesetz der großen Zahlen wird an zwei computersimulierten Zufallsversuchen (Werfen mit einem Würfel  und Reißnagelwurf) illustriert und angewendet. Es werden dabei Wahrscheinlichkeiten experimentell durch Computersimulationen bestätigt und geschätzt.
* '''Baumdiagramm mit Pfad- und Summenregel'''. Im Lernvideo werden zum Lösen von Aufgaben mit mehrstufigen Zufallsversuchen begriffliche Grundlagen geschaffen. Es werden folgende Begriffe in konkreten Anwendungen erläutert: Ereignis, Ergebnismenge, Sicheres Ereignis, Leere Menge als Ereignis, Mehrstufiger Zufallsversuch, Baumdiagramm, Ziehen ohne Zurücklegen, Pfadregel und Summenregel. Es werden heuristische Lesetechniken illustriert, die den Prozess zu einem besseren Aufgabenverständnis vorantreiben können.
* '''Das kurze Streichholz'''. Im Lernvideo werden am Beispiel des Spiels: „Wer zieht zuerst das kurze Streichholz“ die Begriffe: Vorgang mit zufälligem Ergebnis, mehrstufiger Zufallsversuch, Baumdiagramm, Ziehen ohne Zurücklegen, Pfadregel (Multiplikationsregel) und die Wahrscheinlichkeitsverteilung angewendet.
* '''Grundbegriffe der Wahrscheinlichkeitsrechnung - eine Zusammenfassung'''. Es werden verschiedene Grundbegriffe der Wahrscheinlichkeitsrechnung, wie z.B. Zufallsversuch, Wahrscheinlichkeit und Erwartungswert einer Zufallsgröße in kompakter Form definiert und an einigen einfachen Beispielen illustriert.
* '''Varianz und Standardabweichung'''. An verschiedenen Wahrscheinlichkeitsverteilungen werden die Begriffe Varianz und Standardabweichung erläutert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Minilotto "3 aus 7"'''. Es wird ein kombinatorisches Problem mit dem Modell "Ziehen ohne Zurücklegen" am Beispiel "Minilotto 3 aus 7" erörtert. In diesem Zusammenhang wird exemplarisch der Binomialkoeffizient "7 über 3" in seiner Bedeutung erläutert.
* '''Der Binominalkoeffizient "n über k"'''. Es wird der Binomialkoeffizient explizit und rekursiv definiert und der Zusammenhang zu Binomen hergestellt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Das Bernoulli-Experiment'''. Es wird in des Modell des Bernoulli-Experimentes eingeführt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Bernoulli-Ketten der Länge n=2'''. Es wird exemplarisch der Begriff der Bernoulli-Kette der Länge n=2 eingeführt. Als Demonstrationsbeispiel dient ein einfaches Würfelspiel. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Bernoulli-Ketten und die Rekursion von n=3 auf n=2'''. Es wird die Technik der Rekursion auf Bernoulli-Ketten der Länge n=3 angewendet, um Wahrscheinlichkeiten für verschiedene Trefferzahlen zu definieren.
* '''Bernoulli-Formeln und Anwendungen'''. Das Modell der Bernoulliketten mit der Länge n, der Trefferzahl k und der Erfolgswahrscheinlichkeit p wird durch die Bernoulligleichung beschrieben und in einem Geogebra-Arbeitsblatt simuliert. Im Weiteren wird der Begriff der binomialverteilten Zufallsgröße eingeführt und der Wahrscheinlichkeitsrechner in Geogebra am Beispiel der Binomialverteilungen vorgestellt.
* '''Eigenschaften der Binomialverteilung - dein Projekt'''. Vorgestellt wird ein Anleitungsvideo für eine kleine Projektaufgabe zum Thema Eigenschaften der Binomialverteilung mit den Parametern Länge n und Trefferwahrscheinlichkeit p. Außerdem wird gezeigt, wie man den Befehl Binomial benutzt und die Online-Hilfe eines Geogebra-Wiki zu Rate ziehen kann.Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Modul „Verteilung“'''. Im Lernvideo wird an einer Beispielsaufgabe zur Binomialverteilung gezeigt, wie man diese mit dem Modul „Statistik/Verteilung“ aus GeoGebra rechnerisch lösen kann.


====Terme, Gleichungen und Ungleichungen====
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Terme mit Quadratwurzeln. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-terme-mit-quadratwurzeln/ Lernvideo], 27:41 Minuten.
* '''Term und Termwert'''. Die Begriffe Term und Termwert werden in diesem Video exemplarisch eingeführt. Durch Anwendungen in Geogebra werden diese Begriffe abgegrenzt und verstärkt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Heron-Verfahren (babylonisches Wurzelziehen). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-heron-verfahren-babylonisches-wurzelziehen/ Lernvideo], 14:35 Minuten.
* '''Äquivalente Terme und Rechengesetze'''. Im Video wird das Umformen von Termen exemplarisch im CAS von Geogebra eingeführt und auf die Rechengesetze: Kommutativgesetz, Assoziativgesetz und Distributivgesetz der Addition (Multiplikation) rationaler Zahlen zurückgeführt. Zwei Geogebradateien motivieren das Üben zum Umformen von Termen.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Baumdiagramm mit Pfadregel und Summenregel. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-baumdiagramm-mit-pfadregel-und-summenregel/ Lernvideo], 25:32 Minuten.
* '''Äquivalenzumformungen bei Gleichungen'''. Das Lösen einer Gleichung mithilfe äquivalenter Umformungen wird an einem Beispiel erläutert. Es werden die Begriffe Gleichung, Lösungsvariable, Grundbereich der Lösungsvariable sowie der Begriff Lösung einer Gleichung eingeführt. Eine einfache lineare Gleichung wird mit der Methode Null-Setzung/Äqivalenzumformungen schrittweise gelöst. Die Schülerinnen und Schüler können ihre Teilrechnungen mithilfe eines CAS-Arbeitsblattes kontrollieren. Am Ende des Lernvideos wird die Probe für die Lösung der Gleichung illustriert. Hierzu wird von mir die Mathematiksoftware Geogebra mit dem CAS-Modul genutzt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Das Gesetz der großen Zahlen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-das-gesetz-der-grossen-zahlen/ Lernvideo], 21:01 Minuten.
* '''Aus Fehlern lernen'''. Im Lern- und Anleitungsvideo werden Fehlerquellen beim Lösen von Gleichungen mittels äquivalenter Umformungen besprochen. Zu Beginn wird an einer Musteraufgabe gezeigt, wie man das Computer-Algebra-System aus GeoGebra für das kontrollierte Üben zum äquivalenten Umformen von Gleichungen einsetzen kann. Es folgen zwei Schülerdokumentionen, in denen typische Fehler enthalten sind. Aufgabe ist es, die Fehler zu entdecken und zu erklären.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Das kurze Streichholz. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-das-kurze-streichholz/ Lernvideo], 11:48 Minuten.
* '''Umgang mit Formeln'''. Im Lernvideo wird schrittweise gezeigt, wie man mit Formeln aus einer Formelsammlung in Berechnungsaufgaben umgeht. Hierzu wird von mir die Mathematiksoftware GeoGebra mit dem CAS-Modul genutzt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Modul „Verteilung“. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-modul-verteilung/ Lernvideo], 05:05 Minuten.
* '''Das Geheimnis der magischen Truhe'''. Im Lern- und Anleitungsvideo wird der Trick für das Zahlenrätsel: „Die magische Truhe“ zunächst mittels numerischer Rechenbausteine mathematisiert und dann mittels Termumformungen im CAS von GeoGebra vereinfacht, sodass ein Term entsteht, dessen sämtliche Werte durch 9 teilbar sind. Mit dieser Erkenntnis wird das Geheimnis des Zahlenrätsels offen gelegt. Das äquivalente Umformen von Termen (von Hand) wird durch das Nennen der Rechengesetze gefestigt und vertieft.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Drei Punkte auf einer Parabel. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-drei-punkte-auf-einer-parabel/ Lernvideo], 06:30 Minuten.
* '''Formeln interpretieren'''. In diesem Lern- und Anleitungsvideo wird die Methode des Interpretierens von Formeln am Beispiel der physikalischen Gleichung ρ=m/V besprochen. Die Methode wird in 5 Schritte zerlegt. Diese 5 Schritte können auch auf die Fachsprache Mathematik angewendet werden (vergleiche mit der im Video enthaltenen Hausaufgabe). Außerdem wird in einem Exkurs das äquivalente Umformen von Gleichungen auf das Umstellen einer Formel angewendet.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Herleiten der p-q-Lösungsformel. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-herleiten-der-p-q-loesungsformel/ Lernvideo], 10:03 Minuten.
* '''Ungleichungen lösen'''. Im Lernvideo wird zu Beginn der Begriff der Ungleichung an einer Umfangsaufgabe für ein Rechteck eingeführt. Im Hauptteil werden die Äquivalenzumformungen für Ungleichungen genannt und an einem Beispiel einer Ungleichung ausführlich besprochen. Die Lösungen der Ungleichung werden als Lösungsmenge an der Zahlengerade veranschaulicht. Das Programm GeoGebra wird sowohl in der CAS-Ansicht als auch in der Grafikansicht als unterstützendes Illustrationswerkzeug eingesetzt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Scheitelform und Normalform. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-scheitelform-und-normalform/ Lernvideo], 14:18 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Umrechnen von Längeneinheiten. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-umrechnen-von-laengeneinheiten/ Lernvideo], 07:28 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Schriftliche Division natürlicher Zahlen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-schriftliche-division-natuerlicher-zahlen/ Lernvideo], 16:54 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Schriftliche Multiplikation natürlicher Zahlen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-schriftliche-multiplikation-natuerlicher-zahlen/ Lernvideo], 14:33 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Schriftliche Subtraktion natürlicher Zahlen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-schriftliche-subtraktion-natuerlicher-zahlen/ Lernvideo], 07:46 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Schriftliche Addition natürlicher Zahlen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-schriftliche-addition-natuerlicher-zahlen/ Lernvideo], 11:20 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Nullstellenberechnung ganzrationaler Funktionen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-nullstellenberechnung-ganzrationaler-funktionen/ Lernvideo], 14:23 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Optimierungsaufgabe. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-optimierungsaufgabe/ Lernvideo], 07:58 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Nullstellen quadratischer Funktionen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-nullstellen-quadratischer-funktionen/ Lernvideo], 11:02 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Polynomdivision. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-polynomdivision/ Lernvideo], 19:56 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Exponentialfunktionen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-exponentialfunktionen/ Lernvideo], 21:03 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Wurzel aus a-Quadrat. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-wurzel-aus-a-quadrat/ Lernvideo], 07:30 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Normalparabel verschieben. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-normalparabel-verschieben/ Lernvideo], 09:59 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Lagebeziehung von Geraden im Anschauungsraum. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-lagebeziehung-von-geraden-im-anschauungsraum/ Lernvideo], 14:10 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Geradengleichung in Parameterform. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-geradengleichung-in-parameterform/ Lernvideo], 08:14 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). S-Multiplikation. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-s-multiplikation/ Lernvideo], 10:40 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Vektoraddition. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-vektoraddition/ Lernvideo], 07:40 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Vektor. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-vektor/ Lernvideo], 12:05 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2015). Extremwertaufgabe (ohne Nebenbedingungen). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-extremwertaufgabe-ohne-nebenbedingungen/ Lernvideo], 12:55 Minuten.


====Trigonometrie====
====2014====
* '''Eine trigonometrische Aufgabe an rechtwinkligen Dreiecken'''. Es wird eine einfache trigonometrische Anwendungsaufgabe an rechtwinkligen Dreiecken besprochen. Dabei geht es um die Berechnung der Höhe einer Palme, welche an einem Berghang steht. Begriffe wie Cosinus, Tangens und Steigung werden gefestigt.


====Umrechnen von Einheiten====
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Quadratische Gleichungen lösen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-quadratische-gleichungen-loesen/ Lernvideo], 11:47 Minuten.
* '''Umrechnen von Längeneinheiten'''. Im Lernvideo wird das Umrechnen von Längeneinheiten geübt. Drei wiederkehrende Schritte begleiten die Lösungen. Schritt 1: Einheiten vergleichen, Schritt 2: Umrechnungszahl bestimmen und Schritt 3: Rechnen.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Eine spezielle quadratische Funktion. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-eine-spezielle-quadratische-funktion/ Lernvideo], 11:24 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Normalparabel im kartesischen Koordinatensystem. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-normalparabel-im-kartesischen-koordinatensystem/ Lernvideo], 04:49 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Zuordnung f: f(x) = x². Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-zuordnung-f-fx-x%C2%B2/ Lernvideo], 07:29 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Wurzel aus 8. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-wurzel-aus-8/ Lernvideo], 24:12 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Lokale Extrema und VZW-Kriterium. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-lokale-extrema-und-vzw-kriterium/ Lernvideo], 18:44 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Monotonie und Ableitung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-monotonie-und-ableitung/ Lernvideo], 15:40 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Oben offene Schachtel (3D). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-oben-offene-schachtel-3d/ Lernvideo], 16:18 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Testen, Ordnen und Vermuten. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-testen-ordnen-und-vermuten/ Lernvideo], 14:30 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Eindeutig konstruierbar? Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-eindeutig-konstruierbar/ Lernvideo], 08:34 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Potenzregel vermuten. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-potenzregel-vermuten/ Lernvideo], 10:23 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Graphisch Ableiten. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-graphisch-ableiten/ Lernvideo], 09:00 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Figuren im Raum (3D). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-figuren-im-raum/ Lernvideo], 15:15 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Beweisen mit den Kongruenzsätzen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-beweisen-mit-den-kongruenzsaetzen/ Lernvideo], 16:57 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Gleichung der Tangente in x_0. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-gleichung-der-tangente-x_0/ Lernvideo], 08:45 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Ableitung einer Funktion an der Stelle x_0. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-ableitung-einer-funktion-der-stelle-x_0/ Lernvideo], 13:21 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Punkte im Raum (3D). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-punkte-im-raum-3d/ Lernvideo], 11:39 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Kongruenzsatz sws. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-kongruenzsatz-sws/ Lernvideo], 19:01 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Lösungsmengen von LGS (2×2). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-loesungsmengen-von-lgs-2x2/ Lernvideo], 14:23 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Das Tangentenproblem. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-das-tangentenproblem/ Lernvideo], 21:46 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Beobachtungen unter dem Graphen-Mikroskop. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-beobachtungen-unter-dem-graphen-mikroskop/ Lernvideo], 05:05 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Differenzenquotient und spezielle quadratische Funktion. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-differenzenquotient-und-spezielle-quadratische-funktion/ Lernvideo], 07:12 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Differenzenquotient und lineare Funktionen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-differenzenquotient-und-lineare-funktionen/ Lernvideo], 09:22 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Differenzenquotient (mittlere Änderungsrate). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideos-differenzenquotient-mittlere-aenderungsrate/ Lernvideo], 22:57 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Kongruente Figuren aus Bewegungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-kongruente-figuren-aus-bewegungen/ Lernvideo], 11:56 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Proportionalität von Masse und Volumen eines Körpers. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-proportionalitaet-von-masse-und-volumen-eines-koerpers/ Lernvideo], 09:03 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Parameter einer linearen Funktion. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-parameter-einer-linearen-funktion/ Lernvideo], 10:00 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Steigung einer Geraden. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-steigung-einer-geraden/ Lernvideo], 21:22 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Zuordnungen am Fieberthermometer. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-zuordnungen-fieberthermometer/ Lernvideo], 15:35 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Additionsverfahren. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-additionsverfahren/ Lernvideo], 16:39 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Einsetzungsverfahren. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-einsetzungsverfahren/ Lernvideo], 12:24 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Zwei lineare Zuordnungen kreuzen sich. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-zwei-lineare-zuordnungen-kreuzen-sich/ Lernvideo], 12:08 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Graphen linearer Zuordnungen zeichnen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-graphen-linearer-zuordnungen-zeichnen/ Lernvideo], 11:31 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). LGS (2×2) graphisch lösen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-lgs-2x2-graphisch-loesen/ Lernvideo], 13:38 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Konstruktion gleichschenkliges Dreieck. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-konstruktion-gleichschenkliges-dreieck/ Lernvideo], 06:28 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Satz über die Innenwinkelsumme im Dreieck (Viereck). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-satz-ueber-die-innenwinkelsumme-im-dreieck-viereck/ Lernvideo], 08:23 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Kreistangente. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-kreistangente/ Lernvideo], 15:53 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Kreisteile. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-kreisteile/ Lernvideo], 09:50 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Beweis Satz des Thales. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-beweis-satz-des-thales/ Lernvideo], 12:36 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Entdecke einen geometrischen Satz. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-entdecke-einen-geometrischen-satz/ Lernvideo], 05:14 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Winkel verschieben und drehen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-winkel-verschieben-und-drehen/ Lernvideo], 16:41 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Konstruktion Dreieck. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-konstruktion-dreieck/ Lernvideo], 09:30 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Konstruieren vs. Zeichnen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-konstruieren-vs-zeichnen/ Lernvideo], 08:25 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Grundkonstruktionen mit Zirkel und Lineal. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-grundkonstruktionen-mit-zirkel-und-lineal/ Lernvideo], 16:14 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Ortslinien. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-ortslinien/ Lernvideo], 12:04 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Ungleichungen lösen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-ungleichungen-loesen/ Lernvideo], 19:38 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Formeln interpretieren. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-formeln-interpretieren/ Lernvideo], 19:22 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Das Geheimnis der magischen Truhe. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-das-geheimnis-der-magischen-truhe/ Lernvideo], 14:55 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Aus Fehlern lernen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-aus-fehlern-lernen/ Lernvideo], 15:17 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Umgang mit Formeln. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-umgang-mit-formeln/ Lernvideo], 08:22 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Äquivalenzumformungen bei Gleichungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-aequivalenzumformungen-bei-gleichungen/ Lernvideo], 14:42 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Kreiszahl π approximieren. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-kreiszahl-pi-approximieren/ Lernvideo], 22:55 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Äquivalente Terme und Rechengesetze. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-aequivalente-terme-und-rechengesetze/ Lernvideo], 16:40 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Term und Termwert. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-term-und-termwert/ Lernvideo], 16:17 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Tilgen und Finanzieren. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-tilgen-und-finanzieren/ Lernvideo], 11:16 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Formel für die Kosten. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-formel-fuer-die-kosten/ Lernvideo], 10:47 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Exponentielle Abnahme. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-exponentielle-abnahme/ Lernvideo], 09:36 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Beschränktes Wachstum – Eine Einführung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-beschraenktes-wachstum-eine-einfuehrung/ Lernvideo], 12:22 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Zuordnungen in einem rechtwinkligen Koordinatensystem 2. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-zuordnungen-einem-rechtwinkligen-koordinatensystem-2/ Lernvideo], 09:02 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Zuordnungen in einem rechtwinkligen Koordinatensystem 1. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/zuordnungen-einem-rechtwinkligen-koordinatensystem-1/ Lernvideo], 10:19 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Lineare Zuordnungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-lineare-zuordnungen/ Lernvideo], 09:41 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Vertiefende Aufgaben zu Potenzen und Logarithmen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-vertiefende-aufgaben-zu-potenzen-und-logarithmen/ Lernvideo], 23:45 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Terme und Zahlengitter. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-terme-und-zahlengitter/ Lernvideo], 04:19 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Abhängigkeiten beschreiben mittels Proportionalitätsfaktor. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-abhaengigkeiten-beschreiben-mittels-proportionalitaetsfaktor/ Lernvideo], 12:18 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Der Logarithmus als Zahl. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-der-logarithmus-als-zahl/ Lernvideo], 07:59 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Halbierung eines gleichseitigen Dreiecks. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-halbierung-eines-gleichseitigen-dreiecks/ Lernvideo], 09:19 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Potenzgleichungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-potenzgleichungen/ Lernvideo], 09:48 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Berechnungen an Potenzfunktionen – Grundaufgabe 2. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-berechnungen-potenzfunktionen-grundaufgabe-2/ Lernvideo], 10:09 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Berechnungen an Potenzfunktionen – Grundaufgabe 1. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-berechnungen-potenzfunktionen-grundaufgabe-1/ Lernvideo], 11:34 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Lernprojekt Potenzfunktionen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-lernprojekt-potenzfunktionen/ Lernvideo], 06:17 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Umfang eines Kreises. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-umfang-eines-kreises/ Lernvideo], 14:04 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Verhältnisgleichung bei Proportionalität. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-verhaeltnisgleichung-bei-proportionalitaet/ Lernvideo], 09:28 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2014). Dreisatz bei Proportionalität. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-dreisatz-bei-proportionalitaet/ Lernvideo], 09:05 Minuten.


====Wachstum====
====2013====
* '''Exponentielle Abnahme'''. Im Lernvideo wird die Halbwertszeit (das Wort wird im Video nicht genannt) zum Marktpreis eines Fuhrparkes bei exponentieller Abnahme graphisch illustriert und im Computeralgebrasystem (CAS) berechnet. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Beschränktes Wachstum - Eine Einführung'''. Das Rechenmodell des beschränkten Wachstums wird am Beispiel des Borkenkäferbefalls mittels einer vierteiligen Aufgabe vorgestellt. Zunächst wird in einer Tabellenkalkulation die Bestandsfunktion rekursiv berechnet und dann das Gesetz für das beschränkte Wachstum durch Rechnung in der Tabelle bestätigt. Aus dem Gesetz wird deduktiv eine iterative Bildungsvorschrift hergeleitet. Zum Abschluss des Lernvideos wird das Graphenbild des beschränkten Wachstums demonstriert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Tilgen und Finanzieren'''. Im Mittelpunkt des Videos wird das Modellieren eines speziellen Wachstumsprozesses demonstriert. Die Tabellenkalkulation in Geogebra unterstützt die Modellierung. Es entseht ein Tilgungsplan, der zum Zwecke einer Autofinanzierung simuliert wird.


====Winkelfunktionen====
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Antiproportionale Zuordnung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-antiproportionale-zuordnung/ Lernvideo], 09:05 Minuten.
* '''Sinus und Kosinus am Einheitskreis'''. Am Einheitskreis wird der Sinus und Kosinus für Winkel zwischen 0° und 360° definiert. Es werden Animationen für verschiedene Winkel sichtbar. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Vertiefung Antiproportionalität. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-vertiefung-antiproportionalitaet/ Lernvideo], 09:17 Minuten.
* '''Das Bogenmaß - eine reelle Zahl'''. Das Bogenmaß ist ein Alternative für das Gradmaß. Es wird der Zusammenhang zwischen Gradmaß und Bogenmaß am Einheitskreis illustriert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Vertiefung Proportionalität. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-vertiefung-proportionalitaet/ Lernvideo], 08:18 Minuten.
* '''Die Sinusfunktion mit y=sin(x)'''. Aus dem Einheitskreis wird sukzessive der Graph der Sinusfunktion gewonnen. Der Definitionsbereich ist das Grundintervall von 0 bis 2π. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Grundbegriffe der Wahrscheinlichkeitsrechnung – eine Zusammenfassung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-grundbegriffe-der-wahrscheinlichkeitsrechnung-eine-zusammenfassung/ Lernvideo], 32:14 Minuten.
* '''Die Sinusfunktion und die Kosinusfunktion sind periodisch'''. Am Beispiel der Sinus- und Kosinusfunktion wird in Geogebra der Begriff der Periode einer Funktion erläutert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Dreisatz bei proportionalen Zuordnungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-dreisatz-bei-proportionalen-zuordnungen/ Lernvideo], 06:14 Minuten.
* '''Die Kosinusfunktion mit y=cos(x)'''. Aus dem Einheitskreis wird sukzessive der Graph der Kosinusfunktion gewonnen. Der Definitionsbereich ist das Grundintervall von 0 bis 2π. Außerdem wird gezeigt, wie der Kosinusgraph aus der Verschiebung des Sinusgraphen entlang der X-Ache hervorgeht.Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Winkelarten und Winkelweiten. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-winkelarten-und-winkelweiten/ Lernvideo], 11:05 Minuten.
* '''5 Basisübungen zu Sinus und Kosinus am Einheitskreis'''. Teilkompetenz 1: Ich kann ausgewählte Funktionswerte für Sinus und Kosinus nennen. Teilkompetenz 2: Ich kann Winkel vom Gradmaß in das Bogenmaß umrechnen und umgekehrt. Teilkompetenz 3: Ich kann jeden Funktionswert aus der obigen Tabelle am Einheitskreis begründen. Teilkompetenz 4: Ich kann ausgewählte Funktionswerte ohne Taschenrechner miteinander vergleichen. Teilkompetenz 5: Ich kann einfache goniometrische Gleichungen lösen. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Messen von Winkeln zwischen 0° und 180° mit dem Geodreieck. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-messen-von-winkeln-zwischen-0-und-180-mit-dem-geodreieck/ Lernvideo], 15:00 Minuten.
* '''Ableitung der Sinusfunktion und Kosinusfunktion'''. Es werden die Regeln zum Ableiten der Sinus- und Kosinusfunktionen vorgestellt und durch graphisches Ableiten in Geogebra plausibel gemacht. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Formel für den Flächeninhalt eines Kreises. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-formel-fuer-den-flaecheninhalt-eines-kreises/ Lernvideo], 13:17 Minuten.
* '''Amplitude und Periode - dein Projekt'''. Vorgestellt wird ein Anleitungsvideo für eine kleine Projektaufgabe zum Thema Parameterdarstellung anhand der Parameter a und b der Funktion y=a*sin(b*x). Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Proportionale Zuordnung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-proportionale-zuordnung/ Lernvideo], 13:27 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). 64 gleich 65. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-64-gleich-65/ Lernvideo], 02:15 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Eine trigonometrische Aufgabe an rechtwinkligen Dreiecken. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-eine-trigonometrische-aufgabe-rechtwinkligen-dreiecken/ Lernvideo], 07:20 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Raumdiagonale im Quader. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-raumdiagonale-im-quader/ Lernvideo], 06:28 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Beweis zu Strahlensatz, Teil 1. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-beweis-zu-strahlensatz-teil-1/ Lernvideo], 08:11 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Strahlensatz, Teil 2. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-strahlensatz-teil-2/ Lernvideo], 05:16 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Strahlensatz, Teil 1. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-strahlensatz-teil-1/ Lernvideo], 08:45 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Bedienungshinweise zur Applikation „Proportionalität verstehen“. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/anleitungsvideo-bedienungshinweise-zur-applikation-proportionalitaet-verstehen/ Lernvideo], 05:11 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Wie verändern sich Umfang bzw. Flächeninhalt eines Kreises? Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-wie-veraendern-sich-umfang-bzw-flaecheninhalt-eines-kreises/ Lernvideo], 15:10 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Zentrische Streckung 3 – Konstruktion von Bildpunkten 2. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-zentrische-streckung-3-konstruktion-von-bildpunkten-2/ Lernvideo], 03:55 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Quadrat im gleichseitigen Dreieck. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-quadrat-im-gleichseitigen-dreieck/ Lernvideo], 06:30 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Zentrische Streckung 2 – Konstruktion von Bildpunkten 1. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-zentrische-streckung-2-konstruktion-von-bildpunkten-1/ Lernvideo], 03:53 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Zentrische Streckung 1. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/zentrische-streckung-1/ Lernvideo], 08:47 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Senkung auf p%. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-senkung-auf-p/ Lernvideo], 05:53 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Multiplikation rationaler Bruchzahlen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-multiplikation-rationaler-bruchzahlen/ Lernvideo], 22:15 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Steigerung auf p%. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-steigerung-auf-p/ Lernvideo], 04:02 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Berechnung des Grundwertes G. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-berechnung-des-grundwertes-g/ Lernvideo], 06:37 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Berechnung des Prozentsatzes p. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-berechnung-des-prozentsatzes-p/ Lernvideo], 06:06 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Berechnung des Prozentwertes W. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-berechnung-des-prozentwertes-w/ Lernvideo], 05:32 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Grundbegriffe der Prozentrechnung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-grundbegriffe-der-prozentrechnung/ Lernvideo], 05:46 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Eigenschaften der Binomialverteilung – dein Projekt. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM (nicht mehr verfügbar).
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Bernoulli-Formeln und Anwendungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM (nicht mehr verfügbar).
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Bernoulli-Ketten und die Rekursion von n=3 auf n=2. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-bernoulli-ketten-und-die-rekursion-von-n3-auf-n2/ Lernvideo], 19:01 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Bernoulli-Ketten der Länge n=2. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-bernoulli-ketten-der-laenge-n2/ Lernvideo], 17:18 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Das Bernoulli-Experiment. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-das-bernoulli-experiment/ Lernvideo], 12:29 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Der Binomialkoeffizient „n über k“. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-der-binomialkoeffizient-n-ueber-k/ Lernvideo], 20:42 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Minilotto „3 aus 7“. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-minilotto-3-aus-7/ Lernvideo], 15:36 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Varianz und Standardabweichung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-varianz-und-standardabweichung/ Lernvideo], 15:57 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Amplitude und Periode – dein Projekt. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-amplitude-und-periode-dein-projekt/ Lernvideo], 03:45 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Die Sinusfunktion und die Kosinusfunktion sind periodisch. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-die-sinusfunktion-und-die-kosinusfunktion-sind-periodisch/ Lernvideo], 23:29 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Ableitung der Sinusfunktion und der Kosinusfunktion. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-ableitung-der-sinusfunktion-und-der-kosinusfunktion/ Lernvideo], 16:11 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Fünf Basisübungen zu Sinus und Kosinus am Einheitskreis. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-fuenf-basisuebungen-zu-sinus-und-kosinus-einheitskreis/ Lernvideo], 27:13 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Der Graph der Kosinusfunktion mit y=cos(x). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-der-graph-der-kosinusfunktion-mit-ycosx/ Lernvideo], 18:02 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Der Graph der Sinusfunktion mit y=sin(x). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-der-graph-der-sinusfunktion-mit-ysinx/ Lernvideo], 14:47 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Das Bogenmaß – eine reelle Zahl. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-das-bogenmass-eine-reelle-zahl/ Lernvideo], 15:18 Minuten.
* [[Frank Schumann|Schumann, F.]] & Carl, Jens K. (2013). Sinus und Kosinus am Einheitskreis. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM [http://mathe-innovativ.fschumann.com/lernvideo-sinus-und-kosinus-einheitskreis/ Lernvideo], 15:10 Minuten.


=== Autorentätigkeit ===
=== Autorentätigkeit ===
Zeile 200: Zeile 439:
-->
-->


====2014====
====2010 bis dato====
* [[Frank Schumann]]: '''Einführungskurs: Vor der Wochenplanarbeit'''  Wenn man noch nie mit Wochenplänen in einer sechsten Klasse bzw. generell gearbeitet hat, dann empfehle ich vor der eigentlichen Wochenplanarbeit mit Arbeitsplänen zu starten. Hilfestellung für die Lehrperson geben 5 Unterrichtshilfen zu den Themen: Abhängigkeiten zwischen Größen & Diagramme lesen; Zuordnungen beschreiben; Abhängigkeiten untersuchen und veranschaulichen; Einfache mathematische Zusammenhänge und Abhängigkeiten untersuchen, veranschaulichen und präsentieren. Zusatzmaterialien für die Schülerhand sind z.B. Arbeitspläne, Lernvideos, digitale Arbeitsblätter (GeoGebra), Präsentationen etc. Das Praxismaterial stammt aus den Jahren 2013 und früher und wurde vom Autor in dessen Mathematikunterricht erprobt und hat sich bewährt. Erschienen auf meiner privaten Homepage FSchumann.COM, Stuttgart 2014.


====2013====
* [[Frank Schumann|Schumann, F.]] (2016). Individuelle Lernwege öffnen mit Wochenplanarbeit im Fach Mathematik (Band I bis III), Deutschland: Landesinstitut für Schulentwicklung Stuttgart. [http://mathe-innovativ.fschumann.com/individuelle-lernwege-oeffnen-mit-wochenplanarbeit-im-fach-mathematik/ PDFs].
* [[Frank Schumann]]: '''Den Kompetenzerwerb individualisieren - Entdecken und Verstehen. Wochenplanarbeit – Wochenpläne 1 bis 8.'''  Überarbeitung und Erweiterung der bereits im Mai 2006 beim Math-College – Privates Institut für Schulmathematik – erschienenen “Übungsserie der Woche, Teil 1 bis Teil 7. Der Grund für eine Anpassung ergab sich aus der Problematik, dass für einzelne Schülerinnen und Schüler die vorgegebene Arbeitszeit im Unterricht für die Bewältigung der Aufgaben nicht ausreichte. Durch die Einführung Neuer Medien und Technologien und die Verlagerung des “Lehrervortrages” in die häusliche Arbeitszeit (Flipped-Classroom-Idee) mittels Lernvideos, animierter Gif-Dateien und GeoGebra-Arbeitsblätter etc. konnte die effektive Lern- und Übungszeit der Schülerinnen und Schüler im Unterricht maximiert werden. Behandelt werden die Themen: Proportionalität verstehen; Antiproportionalität verstehen; Dreisatz verstehen; Mit dem Dreisatz rechnen; Umfang eines Kreises; Flächeninhalt eines Kreises und Maßstäbliches Darstellen. Unterstützend sollen eine Unterrichtsverlaufsskizze, ein Diagnosetest und ein Vorschlag für eine Klassenarbeit mit Lernzettel wirken. Das Praxismaterial stammt aus den Jahren 2013 und früher und wurde vom Autor in dessen Mathematikunterricht erprobt und hat sich bewährt. Erschienen auf meiner privaten Homepage FSchumann.COM, Stuttgart 2013/2014.<br>PDF Inhaltsverzeichnis, Artikel (ca. 0,1 MB): http://www.fschumann.com/Wochenplanarbeit/Frank_Schumann_Den_Kompetenzerwerb_individualisieren.pdf
* [[Frank Schumann|Schumann, F.]] (2014). Das Variieren von Aufgaben unter Verwendung interaktiver Tafelbilder, Deutschland: Private Homepage www.FSchumann.COM.. [http://mathe-innovativ.fschumann.com/dasvariieren-von-aufgaben-unter-verwendung-interaktiver-tafelbilder/ PDF].
* [[Frank Schumann|Schumann, F.]] (2014). Einführungskurs: Vor der Wochenplanarbeit. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM.
* [[Frank Schumann|Schumann, F.]] (2014). Den Kompetenzerwerb individualisieren - Entdecken und Verstehen. Wochenplanarbeit – Wochenpläne 1 bis 8. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM.
* [[Frank Schumann|Schumann, F.]] (2010). Individuelles Fördern mit Köpfchen - Heterogenität produktiv nutzen. Wertheim, Deutschland: Math-College – Privates Institut für Schulmathematik. [http://mathe-innovativ.fschumann.com/individuelles-foerdern-mit-koepfchen-heterogenitaet-produktiv-nutzen/ PDF].


====2010====
====2000 bis 2009====
* [[Frank Schumann]]: '''Individuelles Fördern mit Köpfchen - Heterogenität produktiv nutzen'''. Behandelt werden Fragen und Themen wie: "Was sind Kompetenzen?",  "Kompetenzorientierte Diagnostik im Mathematikunterricht.", "Was sind  Kompetenzraster?", "Wie können ausgewählte Kompetenzen aus dem überfachlichen  Bereich in das Kompetenzraster implementiert werden?", "Die strategischen  Kompetenzbereiche des Mathematikunterrichts und ihre Anforderungsbereiche.",  "Selbstständiges Lernen durch Lernumgebungen organisieren.", "Fragen des Autors  zum Umgang mit Kompetenzrastern." u.v.a.m.<br>In: Homepage des Math-College - Privates Institut für Schulmathematik, Wertheim 2010.<br>PDF Inhaltsverzeichnis, Einleitung, Artikel (ca. 2,3 MB): http://www.fschumann.com/Publikationen/FrankSchumann_Individuelles_Foerdern_mit_Koepfchen_Heterogenitaet_produktiv_nutzen_Kompetenzraster.pdf<br>ZIP Zusatzdateien für GeoGebra (ca. 0,3 MB): http://www.fschumann.com/data/FrankSchumann_Zusatzdateien_Geogebra_Individuelles_Fördern_mit_Köpfchen_Heterogenität_produktiv_nutzen.zip


====2007====
* [[Frank Schumann|Schumann, F.]] (2007). Niveaugestufte Aufgaben und Lernumgebungen. Wertheim, Deutschland: Math-College – Privates Institut für Schulmathematik.
* [[Frank Schumann]]: Niveaugestufte Aufgaben und Lernumgebungen, In: Homepage des Math-College Wertheim 2007.
* [[Frank Schumann|Schumann, F.]] (2006). Reelle Lösungen einer Gleichung dritten Grades ''Zeitschrift: In Mathe einfach besser'', 2006/2, 2-6. Wertheim, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/reelle-loesungen-einer-gleichung-dritten-grades/ PDF].
 
* [[Frank Schumann|Schumann, F.]] (2006). Das Skalarprodukt und die Winkelberechnungen ''Zeitschrift: In Mathe einfach besser'', 2006/2, 7-12. Wertheim, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/das-skalarprodukt-und-die-winkelberechnungen/ PDF].
====2006====
* [[Frank Schumann|Schumann, F.]] (2006). Das Operatormodell in Tafelbildern. ''Zeitschrift: In Mathe einfach besser'', 2006/2, 13-21. Wertheim, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/das-operatormodell-tafelbildern/ PDF].
* [[Frank Schumann]]: Symbolisches und approximatives Lösen von Gleichungen Teil 2 - Wie erhalte ich Näherungslösungen der Gleichung x³-x+1=0?, Zeitschrift: In Mathe einfach besser... Nr. 1/2006 Seiten 2-8, In: Schumanns Verlagshaus Wertheim.
* [[Frank Schumann|Schumann, F.]] (2006). Den Kompetenzerwerb individualisieren - Entdecken und Verstehen. Übungsserie der Woche, Teil 1 bis 7. In: Homepage des Math-College Wertheim 2006. Wertheim, Deutschland: Math-College.
* [[Frank Schumann]]: Algebraische Eigenschaften des Skalarprodukts (Kopiervorlage / Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium von Texas Instruments), Zeitschrift: In Mathe einfach besser... Nr. 1/2006 Seiten 16-24, In: Schumanns Verlagshaus Wertheim.
* [[Frank Schumann|Schumann, F.]] (2006). Symbolisches und approximatives Lösen von Gleichungen Teil 2 - Wie erhalte ich Näherungslösungen der Gleichung x³-x+1=0? ''Zeitschrift: In Mathe einfach besser'', 2006/1, 2-8. Wertheim, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/symbolisches-und-approximatives-loesen-von-gleichungen-teil-2-wie-erhalte-ich-naeherungsloesungen-der-gleichung-x%C2%B3-x10/ PDF].
* [[Frank Schumann]]: Reelle Lösungen einer Gleichung dritten Grades, Zeitschrift: In Mathe einfach besser... Nr. 2/2006 Seiten 2-6, In: Schumanns Verlagshaus Wertheim.                        
* [[Frank Schumann|Schumann, F.]] (2006). Algebraische Eigenschaften des Skalarprodukts. Kopiervorlage. Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium. ''Zeitschrift: In Mathe einfach besser'', 2006/1, 16-24. Wertheim, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/kopiervorlage-algebraische-eigenschaften-des-skalarprodukts/ PDF].
* [[Frank Schumann]]: Das Skalarprodukt und die Winkelberechnungen, Zeitschrift: In Mathe einfach besser... Nr. 2/2006 Seiten 7-12, In: Schumanns Verlagshaus Wertheim.
* [[Frank Schumann|Schumann, F.]] (2006). Prozent- und Zinsrechnung mit dem TI-30 X II - Übungsmaterial für SchülerInnen am Gymnasium (G8)im Selbstlernverfahren (mit Lösungen). ''Reihe: Ein Lehrbuch des Math-College''. Wertheim, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/prozent-und-zinsrechnung-mit-dem-ti-30x-ii/ PDF].
* [[Frank Schumann]]: Das Operatormodell in Tafelbildern, Zeitschrift: In Mathe einfach besser... Nr. 2/2006 Seiten: 13-21, In: Schumanns Verlagshaus Wertheim.
* [[Frank Schumann|Schumann, F.]] (2005). Symbolisches und approximatives Lösen von Gleichungen Teil 1. Eine harte Nuss von Gleichung. ''Zeitschrift: In Mathe einfach besser'', 2005/2, 2-10. Wertheim, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/symbolisches-und-approximatives-loesen-von-gleichungen-teil-1-eine-harte-nuss-von-gleichung/ PDF].
* [[Frank Schumann]]: Prozent- und Zinsrechnung mit dem TI-30 X II - Übungsmaterial für SchülerInnen am Gymnasium (G8)im Selbstlernverfahren (mit Lösungen), Reihe: Ein Lehrbuch des Math-College, In: Schumanns Verlagshaus Wertheim 2006.
* [[Frank Schumann|Schumann, F.]] & [[Roland Westphal|Westphal, R.]] (2005). Das Skalarprodukt von Vektoren. Kopiervorlage. Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium. ''Zeitschrift: Mathe einfach besser'', 2005/2, 11-15. Wertheim, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/kopiervorlage-das-skalarprodukt-von-vektoren/ PDF].
* [[Frank Schumann]]: Den Kompetenzerwerb individualisieren - Entdecken und Verstehen. Übungsserie der Woche, Teil 1 bis 7. Meine Schülerinnen und Schüler erhielten im Schuljahr 2005/2006 im Mathematikunterricht der 6. Klasse am Dietrich-Bonhoeffer-Gymnasium in Wertheim zum Thema “Abhängigkeiten beschreiben” eine Serie von schriftlichen Aufträgen zur Erledigung von Pflicht- und Wahlaufgaben. Die einzelnen Teilaufträge wurden in unterschiedlichen Sozialformen wie Einzel-, Partner- oder Gruppenunterricht bearbeitet, kontrolliert und im Rückblick im Countdown vor der anstehenden Klassenarbeit auch reflektiert. Das folgende Unterrichtsmaterial wurde im Mathematikunterricht erprobt und hat sich bewährt. In: Homepage des Math-College Wertheim 2006.
* [[Frank Schumann|Schumann, F.]] (2005). Lösen goniometrischer Gleichungen. Kopiervorlage. Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium. ''Zeitschrift: In Mathe einfach besser'', 2005/1, 10-14. Sangerhausen, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/kopiervorlage-loesen-goniometrischer-gleichungen/ PDF]
 
* [[Frank Schumann|Schumann, F.]] (2005). Regeln für die Addition rationaler Zahlen. Kopiervorlage für den TI-30X II S. ''Zeitschrift: In Mathe einfach besser'', 2005/1 15-18. Sangerhausen, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/kopiervorlage-regeln-fuer-die-addition-rationaler-zahlen/ PDF].
====2005====
* [[Frank Schumann|Schumann, F.]] (2005). Kreis und Gerade. Kopiervorlage. Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium. Sangerhausen, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/kopiervorlage-kreis-und-gerade/ PDF].
* [[Frank Schumann]]: Das Einmaleins des TI-89 & TI-89 Titanium (Ein Strategiebuch für TI-CAS-Rechner), Reihe: Ein Lehrbuch des Math-College, In: Schumanns Verlagshaus Sangerhausen 2005.
* [[Frank Schumann|Schumann, F.]] (2005). Der Kreis und seine Gleichungen. Kopiervorlage. Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium. Sangerhausen, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/kopiervorlage-der-kreis-und-seine-gleichungen/ PDF].
* [[Frank Schumann]]: Lösen goniometrischer Gleichungen (Kopiervorlagen / Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium von Texas Instruments), Zeitschrift: In Mathe einfach besser... Nr. 1/2005 Seiten 10-14, In: Schumanns Verlagshaus Sangerhausen.
* [[Frank Schumann|Schumann, F.]] (2004). Das Einmaleins des TI-89 & TI-89 Titanium. Ein Strategiebuch für TI-CAS-Rechner. ''Reihe: Ein Lehrbuch des Math-College''. Sangerhausen, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/das-einmaleins-des-ti-89-und-ti-89-titanium/ PDF].
* [[Frank Schumann]]: Regeln für die Addition rationaler Zahlen (Kopiervorlagen für den TI-30X II S von Texas Instruments), Zeitschrift: In Mathe einfach besser... Nr. 1/2005 Seiten 15-18, In: Schumanns Verlagshaus Sangerhausen.
* [[Frank Schumann|Schumann, F.]] (2004). Eine Einführung in das Tangentenproblem mit dem Voyage 200 - Die beste aller Geraden (eine schülergerechte und rechnergestützte  Einführung in die Differenzialrechnung mit CAS). ''Reihe: Ein Lehrbuch des Math-College''. Sangerhausen, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/eine-einfuehrung-das-tangentenproblem-mit-dem-voyage-200-die-beste-aller-geraden/ PDF].
* [[Frank Schumann]]: Symbolisches und approximatives Lösen von Gleichungen Teil 1 - Eine harte Nuss von Gleichung, Zeitschrift: In Mathe einfach besser... Nr. 2/2005 Seiten 2-10, In: Schumanns Verlagshaus Sangerhausen.
* [[Frank Schumann]] & [[Roland Westphal]]: Das Skalarprodukt von Vektoren (Kopiervorlagen / Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium von Texas Instruments, Zeitschrift: Mathe einfach besser... Nr. 2/2005 Seiten 11-15, In: Schumanns Verlagshaus Sangerhausen.
 
====2004====
* [[Frank Schumann|Schumann, F.]] (2004). Eine Einführung in das Tangentenproblem mit dem Voyage 200 - Die beste aller Geraden (eine schülergerechte und rechnergestützte  Einführung in die Differenzialrechnung mit CAS). ''Reihe: Ein Lehrbuch des Math-College''. Sangerhausen, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/eine-einfuehrung-das-tangentenproblem-mit-dem-voyage-200-die-beste-aller-geraden/ Liste: Artikel].
* [[Frank Schumann|Schumann, F.]] (2004). Regeln für die Multiplikation rationaler Zahlen. Kopiervorlagen für den TI-30X II S. Sangerhausen, Deutschland: Schumanns Verlagshaus.
* [[Frank Schumann|Schumann, F.]] (2004). Regeln für die Multiplikation rationaler Zahlen. Kopiervorlagen für den TI-30X II S. Sangerhausen, Deutschland: Schumanns Verlagshaus.
* [[Frank Schumann|Schumann, F.]] (2004). Kreis und Gerade. Kopiervorlage. Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium. Sangerhausen, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/kopiervorlage-kreis-und-gerade/ Liste: Kopiervorlage].
* [[Frank Schumann|Schumann, F.]] (2004). Das Einmaleins des Voyage 200. Ein Strategiebuch für TI-CAS-Rechner. ''Reihe: Ein Lehrbuch des Math-College'' Sangerhausen, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/das-einmaleins-des-voyage-200/ PDF].
* [[Frank Schumann|Schumann, F.]] (2004). Der Kreis und seine Gleichungen. Kopiervorlage. Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium. Sangerhausen, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/kopiervorlage-der-kreis-und-seine-gleichungen/ Liste: Kopiervorlage].
* [[Frank Schumann|Schumann, F.]] (2001). Terme mit dem Algebra FX 2.0 - Kopiervorlagen für den Mathematikunterricht der Sekundarstufe I, Hannover, Deutschland: Schumanns Verlagshaus. Lizenznehmer: CASIO Europe GmbH Norderstedt. [http://mathe-innovativ.fschumann.com/terme-und-der-algebra-fx-2-0/ PDF].
* [[Frank Schumann|Schumann, F.]] (2004). Das Einmaleins des Voyage 200. Ein Strategiebuch für TI-CAS-Rechner. ''Reihe: Ein Lehrbuch des Math-College'' Sangerhausen, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/das-einmaleins-des-voyage-200/ Liste: Artikel].
* [[Frank Schumann|Schumann, F.]] (2000). Wie viel Bruchrechnung brauchen die SchülerInnen im 21. Jahrhundert? Eine CAS- und DGS-orientierte Einführung in die Bruchrechnung (mit Derive für Windows und [[Cabri Géomètre]] II für Windows). ''Zeitschrift: Mathe-Innovativ'' 2000/1 2-15. Hannover, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/wie-viel-bruchrechnung-brauchen-die-schuelerinnen-im-21-jahrhundert/ PDF].
 
* [[Frank Schumann|Schumann, F.]] (2000). Wie finde ich bloß die Gleichung? – Heuristische Wege zum Lösen einfacher Text- und Sachaufgaben unter Einbeziehung von Computeralgebra (Lehrerhandreichung mit vielen Beispielen). ''Reihe: Math-College-Dokumente''. Hannover, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/frank_schumann_wie-finde-ich-bloss-die-gleichung/ PDF].
====2001====
* [[Frank Schumann|Schumann, F.]] (2001). Terme mit dem Algebra FX 2.0 - Kopiervorlagen für den Mathematikunterricht der Sekundarstufe I, Hannover, Deutschland: Schumanns Verlagshaus. Lizenznehmer: CASIO Europe GmbH Norderstedt. [http://mathe-innovativ.fschumann.com/terme-und-der-algebra-fx-2-0/ Liste: Artikel].
 
====2000====                                                                                               
* [[Frank Schumann|Schumann, F.]] (2000). Wie viel Bruchrechnung brauchen die SchülerInnen im 21. Jahrhundert? Eine CAS- und DGS-orientierte Einführung in die Bruchrechnung (mit Derive für Windows und Cabri Géomètre II für Windows). ''Zeitschrift: Mathe-Innovativ'' 2000/1 2-15. Hannover, Deutschland: Schumanns Verlagshaus.                                                                                            
* [[Frank Schumann|Schumann, F.]] (2000). Wie finde ich bloß die Gleichung? – Heuristische Wege zum Lösen einfacher Text- und Sachaufgaben unter Einbeziehung von Computeralgebra (Lehrerhandreichung mit vielen Beispielen). ''Reihe: Math-College-Dokumente''. Hannover, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/frank_schumann_wie-finde-ich-bloss-die-gleichung/ Liste: Artikel].
* [[Hartmut Henning|Henning, H.]] & [[Frank Schumann|Schumann, F.]] (2000). Einführung in die elementare Bedienung des Algebra FX 2.0 - Viele Beispiele aus Schule und Studium ausführlich dargestellt (Einführung in CAS-Rechner). Norderstedt, Deutschland: CASIO Europe GmbH.
* [[Hartmut Henning|Henning, H.]] & [[Frank Schumann|Schumann, F.]] (2000). Einführung in die elementare Bedienung des Algebra FX 2.0 - Viele Beispiele aus Schule und Studium ausführlich dargestellt (Einführung in CAS-Rechner). Norderstedt, Deutschland: CASIO Europe GmbH.


====1999====
====1998 bis 1999====


* [[Frank Schumann|Schumann, F.]] (1999). Bruchrechnen lernen mit dem Computer – macht das Sinn? ''Zeitschrift: Mathe-Innovativ'', 1999/1, 1-7. Hannover, Deutschland: Schumanns Verlagshaus.  [http://mathe-innovativ.fschumann.com/bruchrechnen-lernen-mit-dem-computer-macht-das-sinn/ PDF: Artikel].
* [[Frank Schumann|Schumann, F.]] (1999). Bruchrechnen lernen mit dem Computer – macht das Sinn? ''Zeitschrift: Mathe-Innovativ'', 1999/1, 1-7. Hannover, Deutschland: Schumanns Verlagshaus.  [http://mathe-innovativ.fschumann.com/bruchrechnen-lernen-mit-dem-computer-macht-das-sinn/ PDF].
* [[Frank Schumann|Schumann, F.]]; [[Hartmut Henning|Henning, H.]] (1999). Zuordnung nach Programm - Die Ursprungsgerade und ihre Anwendungen, Praktische Unterrichtshilfe für einen computerorientierten Mathematikunterricht in der Sekundarstufe I mit Derive für Windows und Cabri Géomètre II für Windows (Schülerausgabe & Lehrerausgabe als neuüberarbeitete Auflage). ''Reihe: Math-College-Dokumente''. Hannover, Deutschland: Schumanns Verlagshaus.
* [[Frank Schumann|Schumann, F.]]; [[Hartmut Henning|Henning, H.]] (1999). Zuordnung nach Programm - Die Ursprungsgerade und ihre Anwendungen, Praktische Unterrichtshilfe für einen computerorientierten Mathematikunterricht in der Sekundarstufe I mit Derive für Windows und Cabri Géomètre II für Windows (Schülerausgabe & Lehrerausgabe als neuüberarbeitete Auflage). ''Reihe: Math-College-Dokumente''. Hannover, Deutschland: Schumanns Verlagshaus.
* [[Hartmut Henning|Henning, H.]]; [[Frank Schumann|Schumann, F.]] (1999). Zuordnung nach Programm – ein didaktisches Modell im modernen Mathematikunterricht am Beispiel der Bestimmung der Sekantengleichung (Teil 1). ''Zeitschrift: Mathe-Innovativ'', 1999/2, 2-11. Hannover, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/zuordnungen-nach-programm-ein-didaktisches-modell-im-modernen-mathematikunterricht-am-beispiel-der-bestimmung-der-sekantengleichung-teil-1/ PDF: Artikel].
* [[Hartmut Henning|Henning, H.]]; [[Frank Schumann|Schumann, F.]] (1999). Zuordnung nach Programm – ein didaktisches Modell im modernen Mathematikunterricht am Beispiel der Bestimmung der Sekantengleichung (Teil 1). ''Zeitschrift: Mathe-Innovativ'', 1999/2, 2-11. Hannover, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/zuordnungen-nach-programm-ein-didaktisches-modell-im-modernen-mathematikunterricht-am-beispiel-der-bestimmung-der-sekantengleichung-teil-1/ PDF].
* [[Frank Schumann|Schumann, F.]] (1999). Eine altbekannte Extremwertaufgabe im computerunterstützten Unterricht, Klasse 11. ''Zeitschrift: Mathe-Innovativ'', 1999/4, 2-13. Hannover, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/eine-altbekannte-extremwertaufgabe-im-computerunterstuetzten-unterricht/ PDF: Artikel].
* [[Frank Schumann|Schumann, F.]] (1999). Eine altbekannte Extremwertaufgabe im computerunterstützten Unterricht, Klasse 11. ''Zeitschrift: Mathe-Innovativ'', 1999/4, 2-13. Hannover, Deutschland: Schumanns Verlagshaus. [http://mathe-innovativ.fschumann.com/eine-altbekannte-extremwertaufgabe-im-computerunterstuetzten-unterricht/ PDF].
* [[Frank Schumann|Schumann, F.]]; [[Hartmut Henning|Henning, H.]] (1999). Grundkonstruktionen, Geometrie mit Cabri Géomètre II für Windows. Arbeitsbuch & CD-ROM mit elektronischen Worksheets und Kopiervorlagen für die Klassen 5 bis 9 an Realschulen und Gymnasien. ''Reihe: Math-College-Dokumente''. Hannover, Deutschland: Schumanns Verlagshaus.
* [[Frank Schumann|Schumann, F.]]; [[Hartmut Henning|Henning, H.]] (1999). Grundkonstruktionen, Geometrie mit Cabri Géomètre II für Windows. Arbeitsbuch & CD-ROM mit elektronischen Worksheets und Kopiervorlagen für die Klassen 5 bis 9 an Realschulen und Gymnasien. ''Reihe: Math-College-Dokumente''. Hannover, Deutschland: Schumanns Verlagshaus.
====1998====
* [[Frank Schumann|Schumann, F.]] (1998). Funktionales Argumentieren im Algebraunterricht der unteren Klassen am Gymnasium. Berlin, Deutschland: Pädagogischer Zeitschriftenverlag. ''Zeitschrift: Mathematik in der Schule'', 1998/1, 48-55.
* [[Frank Schumann|Schumann, F.]] (1998). Funktionales Argumentieren im Algebraunterricht der unteren Klassen am Gymnasium. Berlin, Deutschland: Pädagogischer Zeitschriftenverlag. ''Zeitschrift: Mathematik in der Schule'', 1998/1, 48-55.
* [[Frank Schumann|Schumann, F.]] (1998). 14 Zusatzdateien für die Sekundarstufe I mit Cabri Géomètre II für Windows (Software 3,5" Diskette). Hannover, Deutschland: Math-College - Privates Institut für computerunterstütztes Lernen. [http://mathe-innovativ.fschumann.com/14-zusatzdateien-fuer-die-sekundarstufe-mit-cabri-geometre-ii-fuer-windows/ Liste: Dateien].
* [[Frank Schumann|Schumann, F.]] (1998). 14 Zusatzdateien für die Sekundarstufe I mit Cabri Géomètre II für Windows (Software 3,5" Diskette). Hannover, Deutschland: Math-College - Privates Institut für computerunterstütztes Lernen. [http://mathe-innovativ.fschumann.com/14-zusatzdateien-fuer-die-sekundarstufe-mit-cabri-geometre-ii-fuer-windows/ PDF].
* [[Frank Schumann|Schumann, F.]]; [[Hartmut Henning|Henning, H.]] (1998). Zuordnungen nach Programm - Praktische Unterrichtshilfe für einen computerorientierten Mathematikunterricht in der Sekundarstufe I mit Derive für Windows und Cabri Géomètre II für Windows (Lehrerausgabe). ''Reihe: Math-College-Dokumente''. Hannover, Deutschland: Math-College - Privates Institut für computerunterstütztes Lernen.
* [[Frank Schumann|Schumann, F.]]; [[Hartmut Henning|Henning, H.]] (1998). Zuordnungen nach Programm - Praktische Unterrichtshilfe für einen computerorientierten Mathematikunterricht in der Sekundarstufe I mit Derive für Windows und Cabri Géomètre II für Windows (Lehrerausgabe). ''Reihe: Math-College-Dokumente''. Hannover, Deutschland: Math-College - Privates Institut für computerunterstütztes Lernen.



Aktuelle Version vom 15. April 2021, 14:55 Uhr

Zurück zur Personenseite

Animationen

Schumann, F. (2014-2016). Mathematik visualisieren - 5 GIF-Animationen (GeoGebra) für den Einsatz im Mathematik- und Physikunterricht. Stuttgart, Deutschland: FSchumann.COM. Gesamtliste aller Animationen.

  • Schumann, F. (2016). Bewegungsaufgabe. Fahrradpanne. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM GIF.
  • Schumann, F. (2016). Mit Formeln umgehen. Formel am Oktaeder. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM GIF.
  • Schumann, F. (2014). Funktionen. Rotierendes Dreieck. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM GIF.
  • Schumann, F. (2014). Scheitelform. Quadratische Funktionsgleichungen in der Scheitelpunktsform. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM GIF.
  • Schumann, F. (2014). Maßstab. Vergrößern und Verkleinern einer ebenen Figur. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM GIF.

Applets

Schumann, F. (2015-2019). Mathematik visualisieren - 227 Java-Applets (GeoGebra) für den Einsatz im Mathematik- und Physikunterricht. Stuttgart, Deutschland: FSchumann.COM. Gesamtliste aller Applets.

2019

  • Schumann, F. (2019). Flächeninhalte und Rauminhalte, Flächeninhalt und Umfang von Polygonen, Flächeninhalt eines Rechtecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2019). Rechnen mit rationalen Zahlen, Unechte Brüche und gemischte Schreibweise. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2019). Rechnen mit rationalen Zahlen, Wo liegt am Zahlenstrahl die Zahl 9/5?. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2019). Rechnen mit rationalen Zahlen, Rationale Zahlen an der Zahlengeraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2019). Verallgemeinerung bei Funktionen und Gleichungen, Quadratische Funktionen und Gleichungen, Quadratische Ungleichungen mit Skizzen lösen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2019). Trigonometrische Funktionen, Die Sinusfunktion mit vier Parametern. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2019). Trigonometrische Funktionen, Die Ableitung der Sinusfunktion. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2019). Trigonometrische Funktionen, Die Ableitung der Kosinusfunktion. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2019). Daten und Zufall, Kombinatorik, Binomialkoeffizient „n über k“. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2019). Einführung in die Differenzial- und Integralrechnung, Monotonieintervalle bestimmen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2019). Beziehungen in geometrischen Figuren, Satz des Thales mit Beweis. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2019). Punkte und Vektoren, Geraden in der Ebene. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2019). Einführung in die Differenzial- und Integralrechnung, Berechnen der Tangentengleichung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.

2018

  • Schumann, F. (2018). Einführung in die Differenzial- und Integralrechnung, Ableitungsfunktion – analytisch. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Einführung in die Differenzial- und Integralrechnung, Die Ableitungsfunktion f‘. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Rechnen mit rationalen Zahlen, Das kleinste gemeinsame Vielfache – kgV. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzfunktionen und ganzrationale Funktionen, Verhalten von f für x gegen unendlich. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzfunktionen und ganzrationale Funktionen, Potenzfunktionen mit ganzzahligen Exponenten. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Flächeninhalte und Rauminhalte, Flächeninhalte und Volumen von Körpern, Volumen eines Quaders. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Flächeninhalte und Rauminhalte, Flächeninhalte und Volumen von Körpern, Der Oberflächeninhalt eines Quaders. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Flächeninhalte und Rauminhalte, Flächeninhalte und Volumen von Körpern, Alle Netze des Würfels. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Flächeninhalte und Rauminhalte, Flächeninhalte und Volumen von Körpern, Volumen einer Halbkugel. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Flächeninhalte und Rauminhalte, Flächeninhalt und Umfang von Kreisen und Kreisteilen, Flächeninhalt eines Kreises. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Flächeninhalte und Rauminhalte, Flächeninhalt und Umfang von Kreisen und Kreisteilen, Approximation der Kreiszahl. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Flächeninhalte und Rauminhalte, Flächeninhalt und Umfang von Kreisen und Kreisteilen, Bogenlänge und Flächeninhalt eines Kreissektors. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, Graphisches Lösen von Exponentialgleichungen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, Potenzen mit natürlichen Exponenten (n>0). Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, Potenzen mit ganzzahligen Exponenten. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, Vereinfachen von Potenz- und Wurzeltermen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, Graphisches Lösen einfacher Potenzgleichungen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, Einfache Potenzgleichungen lösen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Verallgemeinerung bei Funktionen und Gleichungen, Potenzieren, Radizieren und Logarithmieren, Einfache Exponentialgleichungen lösen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Funktionen, Funktionswert rechnerisch und graphisch bestimmen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2018). Quadratwurzel und reelle Zahlen, Wie groß ist die Höhe? Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.

2017

  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Abstand von zwei parallelen Geraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Abstand von Punkt und Gerade. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Berechnung mit dem Satz des Pythagoras I. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Berechnung mit dem Satz des Pythagoras II. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Berechnung mit dem Satz des Pythagoras III. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Schnittpunkte von Ortslinien konstruieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Ortslinie Mittelsenkrechte. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Ortslinie Winkelhalbierende. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Wo liegen alle Punkte, welche von der Geraden f den festen Abstand 3 cm haben? Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Wo liegen alle Punkte, welche von den beiden parallelen Gerade g und h den gleichen Abstand haben? Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Wo liegen alle Punkte, welche von einem Punkt P den festen Abstand 3 cm haben? Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Quadratwurzel und reelle Zahlen, Tabellenkalkulation (TK) – Heronverfahren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Physikalisch-mathematische Anwendungen, Interpretation eines v-t-Diagramms. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Kongruenz und Ähnlichkeit, Umkehrung Strahlensatz. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Systeme linearer Gleichungen, Einsetzungsverfahren mit Anweisungen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Physikalisch-mathematische Anwendungen, Durchschnitts- und Augenblicksgeschwindigkeit. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Rechnen mit rationalen Zahlen, Termwerte berechnen durch Ersetzen von Variablen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Rechnen mit rationalen Zahlen, Terme mit einer Variablen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Physikalisch-mathematische Anwendungen, Kräfteaddition – Kräfteparallelogramm. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, Lineare Tabelle – durch interaktives Rechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, Lineare Tabelle – durch direktes Rechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, Exponentielle Tabelle – durch direktes Rechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, Exponentielle Tabelle – durch iteratives Rechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, Beschränkte Wachstumstabelle – durch iteratives Rechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Tangens am rechtwinkligen Dreieck. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Sinus und Kosinus am rechtwinkligen Dreieck. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Der Satz des Pythagoras im Quader. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Der Satz des Pythagoras. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Gleichungen, Löse eine einfache Verhältnisgleichung nach x auf. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Kongruenz und Ähnlichkeit, Zentrische Streckung eines Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Kongruenz und Ähnlichkeit, Strahlensatz (X-Figur). Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Kongruenz und Ähnlichkeit, Strahlensatz (V-Figur). Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Kongruenz und Ähnlichkeit, Figur vergrößern nach Maßstab. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Kongruenz und Ähnlichkeit, Der Pantograph (Storchschnabel) zum Vergrößern. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Daten und Zufall, Beurteilende Statistik, Hypothesentest (Signifikanztest). Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Systeme linearer Gleichungen, Schnittpunkt zweier Geraden berechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Quadratische Funktionen und Gleichungen, Exaktes Lösen gemischt quadratischer Gleichungen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Quadratische Funktionen und Gleichungen, Exaktes Lösen von reinquadratischen Gleichungen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Dreieck aus Höhe und Winkel konstruieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Beziehungen in geometrischen Figuren, Mittelparallele – Ortslinie. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Quadratische Funktionen und Gleichungen, Optimierungsaufgabe zum Einstieg. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Quadratische Funktionen und Gleichungen, Der Scheitelpunkt S als Extremum. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Quadratische Funktionen und Gleichungen, Quadratische Funktionen in der Form y=a(x+d)²+e. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Quadratische Funktionen und Gleichungen, Spezielle quadratische Funktion. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Quadratische Funktionen und Gleichungen, Normalparabel verschieben. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Quadratische Funktionen und Gleichungen, Vom Quadrat zur Normalparabel. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Funktionen, Lineare Funktionen darstellen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Funktionen, Punktprobe. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Terme und Gleichungen. Erste binomische Formel – geometrisch interpretiert. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Terme und Gleichungen. Anwendung des Distributivgesetzes, Teil 2. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Terme und Gleichungen. Anwendung des Distributivgesetzes, Teil 1. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Quadratwurzel und reelle Zahlen, Quadratwurzeln vereinfachen und approximieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Proportionale und antiproportionale Funktionen, Funktionen mit der Gleichung y=m*x. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2017). Verallgemeinerung bei Funktionen und Gleichungen, Proportionale und antiproportionale Funktionen, Funktionen mit der Gleichung y=m/x. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.

2016

  • Schumann, F. (2016). Einführung in die Differenzial- und Integralrechnung, Differenzenquotienten berechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Einteilung der Dreiecke. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Funktionen, Steigungen oder Gefälle im Gelände. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Einführung in die Differenzial- und Integralrechnung, Flächenberechnung unterhalb eines Graphens. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Flächeninhalt eines Trapezes. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Terme konstruieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM GeoGebraBuch.
    • Ein Term für den Umfang
    • Terme und Termwerte
    • Welcher Term wird hier konstruiert? (Aufgabe 1)
    • Welcher Term wird hier konstruiert? (Aufgabe 2)
    • Welcher Term wird hier konstruiert? (Aufgabe 3)
    • Welcher Term wird hier konstruiert? (Aufgabe 4)
  • Schumann, F. (2016). Quadratwurzel und reelle Zahlen, Quadrieren rationaler Zahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratwurzel und reelle Zahlen, Zwei Zuordnungen: Quadrieren und Wurzelziehen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratwurzel und reelle Zahlen, Flächeninhalt eines Quadrates verändern. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Definieren und Ordnen und Beweisen, Beweisen mit Hilfslinien. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM GeoGebraBuch.
    • Konstruktion - Mittellinie im Dreieck
    • Beweis - Konstruktion - Mittenviereck.
  • Schumann, F. (2016). Definieren und Ordnen und Beweisen, Beweisen mit Variablen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM GeoGebraBuch:
    • Zahlenmengen durch variable Terme beschreiben
    • Voraussetzung und Behauptung mit Variablen
    • Teilbarkeit durch 3 schlussfolgern.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Tilgungsplan für einen Kredit. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Daten und Zufall, Wahrscheinlichkeiten bestimmen durch Simulieren. Empirisches Gesetz der großen Zahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Proportionale und antiproportionale Funktionen, Volumen in Abhängigkeit der Höhe einer Pyramide. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Grundwert bei prozentualer Veränderung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Prozentsatz bei prozentualer Veränderung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Prozentwert bei prozentualer Veränderung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratwurzel und reelle Zahlen, Quadratwurzeln aus 0 bis 100 auf der Zahlengeraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratwurzel und reelle Zahlen, Rationale Zahlen auf der Zahlengeraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Flächeninhalt eines Parallelogramms. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Flächeninhalt eines Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Daten und Zufall, Beschreibende Statistik, Urliste statistisch auswerten. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Daten und Zufall, Beschreibende Statistik, Urliste-Häufigkeitstabelle-Kreisdiagramm. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Flächeninhalte von Rechtecken. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Umfang eines Polygons. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Umfang eines Rechtecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Ausklammern und Dezimalzahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Ausmultiplizieren und Dezimalzahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Anteile in Prozent schreiben. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Prozente – Anteilsberechnungen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Terme und Gleichungen, Ausmultiplizieren oder Faktorisieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Distributivgesetz für positive rationale Zahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Subtraktion rationaler Zahlen in Bruchform. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Proportionale und antiproportionale Funktionen, Mit dem Dreisatz rechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Division rationaler Zahlen in Bruchform. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Multiplikation rationaler Zahlen in Bruchform. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Ordnung rationaler Zahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Brüche gleichnamig machen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Subtraktion ganzer Zahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Addition ganzer Zahlen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratwurzel und reelle Zahlen, Eine irrationale Zahl auf der Zahlengeraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Kürzen echter Brüche. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Unterjährige Verzinsung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Gleichungen, Lineare Gleichung in zwei Schritten lösen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Funktionen, Funktionsgleichung - Wertetabelle - Graph. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Kongruenz und Ähnlichkeit, Turmhöhe mittels maßstäblicher Zeichnung bestimmen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Kongruenz und Ähnlichkeit, Wahre Länge einer Raumdiagonale. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Kongruenz und Ähnlichkeit, Kongruenzbeweis: Quadrat im Quadrat. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Kongruenz und Ähnlichkeit, Quadratische Pyramide mit Stützdreieck. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Kongruenz und Ähnlichkeit, Kongruente Figuren aus einer Bewegung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Kongruenz und Ähnlichkeit, Konstruktion nach KGS sss. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Kongruenz und Ähnlichkeit, Konstruktion nach KGS wsw. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Kongruenz und Ähnlichkeit, Konstruktion nach KGS sws. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Kongruenz und Ähnlichkeit, Konstruktion nach KGS Ssw. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Funktionen, Lagebeziehungen von Geraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Proportionale und antiproportionale Funktionen, Dreisatz bei proportionaler Zuordnung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Proportionale und antiproportionale Funktionen, Dreisatz bei antiproportionaler Zuordnung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratwurzel und reelle Zahlen, Quadrieren und Wurzelziehen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratwurzel und reelle Zahlen, Quadrat mit doppelt so großem Flächeninhalt. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratwurzel und reelle Zahlen, Seitenlänge eines Quadrates messen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Physikalisch-mathematische Anwendungen, Punktwolke mit Ausgleichsgerade. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Systeme linearer Gleichungen, Gleichung mit zwei Variablen lösen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Die Steigung m einer Geraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Eine Größe Y wächst linear. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Ursprungsgerade in y-Richtung verschieben. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Inkreis eines Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Terme und Gleichungen, Eine Gleichung bzw. Ungleichung lösen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen. Lineare Funktionsgleichung gesucht. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Physikalisch-mathematische Anwendungen. Zwei Diagramme für eine gleichförmige Bewegung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Physikalisch-mathematische Anwendungen. s-t-Diagramm einer gleichförmigen Bewegung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Daten und Zufall, Wahrscheinlichkeiten bestimmen durch Simulieren. Alles Zufall?. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Daten und Zufall, Wahrscheinlichkeiten bestimmen durch Simulieren. MCM: Approximierte Bestimmung der Zahl π. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Daten und Zufall, Wahrscheinlichkeiten bestimmen durch Simulieren. Simulation: Ziehen mit Zurücklegen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Daten und Zufall, Wahrscheinlichkeiten bestimmen durch Simulieren. Simulation: Ziehen ohne Zurücklegen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Daten und Zufall, Wahrscheinlichkeiten bestimmen durch Simulieren. Testantworten nur per Zufall. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Physikalisch-mathematische Anwendungen. Geschwindigkeit aus Weg und Zeit berechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Physikalisch-mathematische Anwendungen. Weg aus Geschwindigkeit und Zeit berechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Physikalisch-mathematische Anwendungen. Zeit aus Geschwindigkeit und Weg berechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratische und andere Funktionen. Verändern des Funktionsterms mit drei Parametern. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratische und andere Funktionen. Strecken von Funktionsgraphen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratische und andere Funktionen. Verschieben des Graphen in y-Richtung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratische und andere Funktionen. Verschieben des Graphen in x-Richtung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratische und andere Funktionen. Steigung einer Geraden g(AB) berechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Trigonometrische Funktionen, Graph der Kosinusfunktion. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Trigonometrische Funktionen, Graph der Sinusfunktion. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Trigonometrische Funktionen, Trigonometrische Funktionen am Einheitskreis. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Berechnung des Grundwertes G. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Berechnung des Prozentsatzes p. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Berechnung des Prozentwertes W. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Eine Senkung um p% bedeutet…. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Eine Steigerung um p% bedeutet…. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Prozentrechnung und Zinsrechnung, Zinseszinsrechnung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Rechnen mit rationalen Zahlen, Addition rationaler Zahlen in Bruchform. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Bildentstehung an der Sammellinse. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Konstruktion eines gleichschenkligen Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Konstruktion eines gleichseitigen Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Mittelpunkt eines Kreisbogens konstruieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Mittelsenkrechte an zwei berührenden Kreisen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Mittelsenkrechte einer Strecke. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Satz des Thales. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Senkrechte zu einer Geraden durch einen Punkt. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Von der Sekante zur Tangente. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Tangente am Kreis konstruieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Tangenten von außen konstruieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Umkreismittelpunkt D eines Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Winkel an Kreuzungen und Parallelen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Winkelhalbierende von zwei schneidenden Geraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Winkelsumme im Dreieck. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Beziehungen in geometrischen Figuren, Zwei Mittelsenkrechten kreuzen sich. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Systeme linearer Gleichungen, Einsetzungsverfahren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Systeme linearer Gleichungen, Lineare Gleichungen lösen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Systeme linearer Gleichungen, Lineare Gleichungen mit zwei Variablen, gesucht x. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Systeme linearer Gleichungen, Lineare Gleichungen mit zwei Variablen, gesucht y. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Systeme linearer Gleichungen, Lösen eines LGS (2×2). Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Systeme linearer Gleichungen, Zeichnerisches Lösen eines LGS. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratische und andere Funktionen, Scheitelpunktsberechnung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Quadratische und andere Funktionen, Von der Scheitelform zum Scheitelpunkt. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Flächeninhalte und Rauminhalte, Flächeninhalte von Dreiecken oder Vierecken oder Kreisen, Umfang eines Kreises durch Abrollen eines Fadens. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Definieren und Ordnen und Beweisen, Das Haus der Vierecke. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Anwendung der abc-Lösungsformel mit Diskriminante. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Aufstellen der quadratischen Funktionsgleichung: f(x)=ax²+bx+c. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Einfluss der Parameter: a, b und c auf Form und Lage der Parabel. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Gerade zur Gleichung y=mx+c. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Von der Geraden zur Gleichung y=mx+n. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Von der Ursprungsgerade zur Gleichung y=mx. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Graphisches Lösen quadratischer Gleichungen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Verallgemeinerung bei Funktionen und Gleichungen, Zu den Lösungen die passende Gleichung. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2016). Winkel messen und zeichnen, Winkelweite mit dem Geodreieck messen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.

2015

  • Schumann, F. (2015). Quadratische und andere Funktionen. Von der Parabel zur Gleichung y = ax². Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2015). Terme und Gleichungen. Klammere aus. Multipliziere aus. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.
  • Schumann, F. (2015). Terme und Gleichungen. Multipliziere aus. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM Applet.

Lernvideos

Schumann, F. & Carl, Jens K. (2013-2019). Mathematik visualisieren - 152 Lernvideos für den Einsatz im Mathematikunterricht am Gymnasium. Stuttgart, Deutschland: FSchumann.COM. Gesamtliste aller Lernvideos. Gesamtlaufzeit: 31 Stunden 49 Minuten 00 Sekunden.

2019

  • Schumann, F. & [Carl, J. K.] (2019). Binomialverteilung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 29:47 Minuten.
  • Schumann, F. & [Carl, J. K.] (2019). Gemischt quadratische Gleichungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 11:31 Minuten.
  • Schumann, F. & [Carl, J. K.] (2019). Reinquadratische Gleichungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 17:28 Minuten.

2017

  • Schumann, F. & Carl, Jens K. (2017). Rechenvorteile. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 2:09 Minuten.
  • Schumann, F. & Carl, Jens K. (2017). Einführung in das statistische Testen von Hypothesen, Teile 1 bis 3. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideos, 43:42 Minuten.

2016

  • Schumann, F. & Carl, Jens K. (2016). Beweis Satz des Pythagoras. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 17:13 Minuten.
  • Schumann, F. & Carl, Jens K. (2016). Einen Term für b entdecken. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 08:00 Minuten.

2015

  • Schumann, F. & Carl, Jens K. (2015). Terme mit Quadratwurzeln. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 27:41 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Heron-Verfahren (babylonisches Wurzelziehen). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 14:35 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Baumdiagramm mit Pfadregel und Summenregel. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 25:32 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Das Gesetz der großen Zahlen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 21:01 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Das kurze Streichholz. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 11:48 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Modul „Verteilung“. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 05:05 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Drei Punkte auf einer Parabel. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 06:30 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Herleiten der p-q-Lösungsformel. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 10:03 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Scheitelform und Normalform. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 14:18 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Umrechnen von Längeneinheiten. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 07:28 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Schriftliche Division natürlicher Zahlen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 16:54 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Schriftliche Multiplikation natürlicher Zahlen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 14:33 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Schriftliche Subtraktion natürlicher Zahlen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 07:46 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Schriftliche Addition natürlicher Zahlen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 11:20 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Nullstellenberechnung ganzrationaler Funktionen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 14:23 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Optimierungsaufgabe. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 07:58 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Nullstellen quadratischer Funktionen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 11:02 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Polynomdivision. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 19:56 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Exponentialfunktionen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 21:03 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Wurzel aus a-Quadrat. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 07:30 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Normalparabel verschieben. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:59 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Lagebeziehung von Geraden im Anschauungsraum. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 14:10 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Geradengleichung in Parameterform. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 08:14 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). S-Multiplikation. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 10:40 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Vektoraddition. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 07:40 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Vektor. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 12:05 Minuten.
  • Schumann, F. & Carl, Jens K. (2015). Extremwertaufgabe (ohne Nebenbedingungen). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 12:55 Minuten.

2014

  • Schumann, F. & Carl, Jens K. (2014). Quadratische Gleichungen lösen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 11:47 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Eine spezielle quadratische Funktion. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 11:24 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Normalparabel im kartesischen Koordinatensystem. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 04:49 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Zuordnung f: f(x) = x². Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 07:29 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Wurzel aus 8. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 24:12 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Lokale Extrema und VZW-Kriterium. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 18:44 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Monotonie und Ableitung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 15:40 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Oben offene Schachtel (3D). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 16:18 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Testen, Ordnen und Vermuten. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 14:30 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Eindeutig konstruierbar? Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 08:34 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Potenzregel vermuten. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 10:23 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Graphisch Ableiten. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:00 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Figuren im Raum (3D). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 15:15 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Beweisen mit den Kongruenzsätzen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 16:57 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Gleichung der Tangente in x_0. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 08:45 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Ableitung einer Funktion an der Stelle x_0. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 13:21 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Punkte im Raum (3D). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 11:39 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Kongruenzsatz sws. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 19:01 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Lösungsmengen von LGS (2×2). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 14:23 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Das Tangentenproblem. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 21:46 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Beobachtungen unter dem Graphen-Mikroskop. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 05:05 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Differenzenquotient und spezielle quadratische Funktion. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 07:12 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Differenzenquotient und lineare Funktionen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:22 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Differenzenquotient (mittlere Änderungsrate). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 22:57 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Kongruente Figuren aus Bewegungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 11:56 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Proportionalität von Masse und Volumen eines Körpers. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:03 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Parameter einer linearen Funktion. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 10:00 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Steigung einer Geraden. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 21:22 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Zuordnungen am Fieberthermometer. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 15:35 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Additionsverfahren. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 16:39 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Einsetzungsverfahren. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 12:24 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Zwei lineare Zuordnungen kreuzen sich. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 12:08 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Graphen linearer Zuordnungen zeichnen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 11:31 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). LGS (2×2) graphisch lösen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 13:38 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Konstruktion gleichschenkliges Dreieck. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 06:28 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Satz über die Innenwinkelsumme im Dreieck (Viereck). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 08:23 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Kreistangente. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 15:53 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Kreisteile. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:50 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Beweis Satz des Thales. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 12:36 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Entdecke einen geometrischen Satz. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 05:14 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Winkel verschieben und drehen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 16:41 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Konstruktion Dreieck. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:30 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Konstruieren vs. Zeichnen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 08:25 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Grundkonstruktionen mit Zirkel und Lineal. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 16:14 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Ortslinien. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 12:04 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Ungleichungen lösen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 19:38 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Formeln interpretieren. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 19:22 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Das Geheimnis der magischen Truhe. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 14:55 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Aus Fehlern lernen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 15:17 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Umgang mit Formeln. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 08:22 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Äquivalenzumformungen bei Gleichungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 14:42 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Kreiszahl π approximieren. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 22:55 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Äquivalente Terme und Rechengesetze. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 16:40 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Term und Termwert. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 16:17 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Tilgen und Finanzieren. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 11:16 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Formel für die Kosten. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 10:47 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Exponentielle Abnahme. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:36 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Beschränktes Wachstum – Eine Einführung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 12:22 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Zuordnungen in einem rechtwinkligen Koordinatensystem 2. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:02 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Zuordnungen in einem rechtwinkligen Koordinatensystem 1. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 10:19 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Lineare Zuordnungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:41 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Vertiefende Aufgaben zu Potenzen und Logarithmen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 23:45 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Terme und Zahlengitter. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 04:19 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Abhängigkeiten beschreiben mittels Proportionalitätsfaktor. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 12:18 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Der Logarithmus als Zahl. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 07:59 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Halbierung eines gleichseitigen Dreiecks. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:19 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Potenzgleichungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:48 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Berechnungen an Potenzfunktionen – Grundaufgabe 2. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 10:09 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Berechnungen an Potenzfunktionen – Grundaufgabe 1. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 11:34 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Lernprojekt Potenzfunktionen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 06:17 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Umfang eines Kreises. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 14:04 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Verhältnisgleichung bei Proportionalität. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:28 Minuten.
  • Schumann, F. & Carl, Jens K. (2014). Dreisatz bei Proportionalität. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:05 Minuten.

2013

  • Schumann, F. & Carl, Jens K. (2013). Antiproportionale Zuordnung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:05 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Vertiefung Antiproportionalität. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 09:17 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Vertiefung Proportionalität. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 08:18 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Grundbegriffe der Wahrscheinlichkeitsrechnung – eine Zusammenfassung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 32:14 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Dreisatz bei proportionalen Zuordnungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 06:14 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Winkelarten und Winkelweiten. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 11:05 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Messen von Winkeln zwischen 0° und 180° mit dem Geodreieck. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 15:00 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Formel für den Flächeninhalt eines Kreises. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 13:17 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Proportionale Zuordnung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 13:27 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). 64 gleich 65. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 02:15 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Eine trigonometrische Aufgabe an rechtwinkligen Dreiecken. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 07:20 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Raumdiagonale im Quader. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 06:28 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Beweis zu Strahlensatz, Teil 1. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 08:11 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Strahlensatz, Teil 2. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 05:16 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Strahlensatz, Teil 1. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 08:45 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Bedienungshinweise zur Applikation „Proportionalität verstehen“. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 05:11 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Wie verändern sich Umfang bzw. Flächeninhalt eines Kreises? Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 15:10 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Zentrische Streckung 3 – Konstruktion von Bildpunkten 2. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 03:55 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Quadrat im gleichseitigen Dreieck. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 06:30 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Zentrische Streckung 2 – Konstruktion von Bildpunkten 1. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 03:53 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Zentrische Streckung 1. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 08:47 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Senkung auf p%. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 05:53 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Multiplikation rationaler Bruchzahlen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 22:15 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Steigerung auf p%. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 04:02 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Berechnung des Grundwertes G. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 06:37 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Berechnung des Prozentsatzes p. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 06:06 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Berechnung des Prozentwertes W. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 05:32 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Grundbegriffe der Prozentrechnung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 05:46 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Eigenschaften der Binomialverteilung – dein Projekt. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM (nicht mehr verfügbar).
  • Schumann, F. & Carl, Jens K. (2013). Bernoulli-Formeln und Anwendungen. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM (nicht mehr verfügbar).
  • Schumann, F. & Carl, Jens K. (2013). Bernoulli-Ketten und die Rekursion von n=3 auf n=2. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 19:01 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Bernoulli-Ketten der Länge n=2. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 17:18 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Das Bernoulli-Experiment. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 12:29 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Der Binomialkoeffizient „n über k“. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 20:42 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Minilotto „3 aus 7“. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 15:36 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Varianz und Standardabweichung. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 15:57 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Amplitude und Periode – dein Projekt. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 03:45 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Die Sinusfunktion und die Kosinusfunktion sind periodisch. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 23:29 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Ableitung der Sinusfunktion und der Kosinusfunktion. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 16:11 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Fünf Basisübungen zu Sinus und Kosinus am Einheitskreis. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 27:13 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Der Graph der Kosinusfunktion mit y=cos(x). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 18:02 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Der Graph der Sinusfunktion mit y=sin(x). Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 14:47 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Das Bogenmaß – eine reelle Zahl. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 15:18 Minuten.
  • Schumann, F. & Carl, Jens K. (2013). Sinus und Kosinus am Einheitskreis. Stuttgart, Deutschland: www.YouTube.COM und www.FSchumann.COM Lernvideo, 15:10 Minuten.

Autorentätigkeit

2010 bis dato

  • Schumann, F. (2016). Individuelle Lernwege öffnen mit Wochenplanarbeit im Fach Mathematik (Band I bis III), Deutschland: Landesinstitut für Schulentwicklung Stuttgart. PDFs.
  • Schumann, F. (2014). Das Variieren von Aufgaben unter Verwendung interaktiver Tafelbilder, Deutschland: Private Homepage www.FSchumann.COM.. PDF.
  • Schumann, F. (2014). Einführungskurs: Vor der Wochenplanarbeit. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM.
  • Schumann, F. (2014). Den Kompetenzerwerb individualisieren - Entdecken und Verstehen. Wochenplanarbeit – Wochenpläne 1 bis 8. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM.
  • Schumann, F. (2010). Individuelles Fördern mit Köpfchen - Heterogenität produktiv nutzen. Wertheim, Deutschland: Math-College – Privates Institut für Schulmathematik. PDF.

2000 bis 2009

  • Schumann, F. (2007). Niveaugestufte Aufgaben und Lernumgebungen. Wertheim, Deutschland: Math-College – Privates Institut für Schulmathematik.
  • Schumann, F. (2006). Reelle Lösungen einer Gleichung dritten Grades Zeitschrift: In Mathe einfach besser, 2006/2, 2-6. Wertheim, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2006). Das Skalarprodukt und die Winkelberechnungen Zeitschrift: In Mathe einfach besser, 2006/2, 7-12. Wertheim, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2006). Das Operatormodell in Tafelbildern. Zeitschrift: In Mathe einfach besser, 2006/2, 13-21. Wertheim, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2006). Den Kompetenzerwerb individualisieren - Entdecken und Verstehen. Übungsserie der Woche, Teil 1 bis 7. In: Homepage des Math-College Wertheim 2006. Wertheim, Deutschland: Math-College.
  • Schumann, F. (2006). Symbolisches und approximatives Lösen von Gleichungen Teil 2 - Wie erhalte ich Näherungslösungen der Gleichung x³-x+1=0? Zeitschrift: In Mathe einfach besser, 2006/1, 2-8. Wertheim, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2006). Algebraische Eigenschaften des Skalarprodukts. Kopiervorlage. Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium. Zeitschrift: In Mathe einfach besser, 2006/1, 16-24. Wertheim, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2006). Prozent- und Zinsrechnung mit dem TI-30 X II - Übungsmaterial für SchülerInnen am Gymnasium (G8)im Selbstlernverfahren (mit Lösungen). Reihe: Ein Lehrbuch des Math-College. Wertheim, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2005). Symbolisches und approximatives Lösen von Gleichungen Teil 1. Eine harte Nuss von Gleichung. Zeitschrift: In Mathe einfach besser, 2005/2, 2-10. Wertheim, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. & Westphal, R. (2005). Das Skalarprodukt von Vektoren. Kopiervorlage. Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium. Zeitschrift: Mathe einfach besser, 2005/2, 11-15. Wertheim, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2005). Lösen goniometrischer Gleichungen. Kopiervorlage. Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium. Zeitschrift: In Mathe einfach besser, 2005/1, 10-14. Sangerhausen, Deutschland: Schumanns Verlagshaus. PDF
  • Schumann, F. (2005). Regeln für die Addition rationaler Zahlen. Kopiervorlage für den TI-30X II S. Zeitschrift: In Mathe einfach besser, 2005/1 15-18. Sangerhausen, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2005). Kreis und Gerade. Kopiervorlage. Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium. Sangerhausen, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2005). Der Kreis und seine Gleichungen. Kopiervorlage. Eine Grafisch-numerische Applikation (GNA) für den Voyage 200 und TI-89 Titanium. Sangerhausen, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2004). Das Einmaleins des TI-89 & TI-89 Titanium. Ein Strategiebuch für TI-CAS-Rechner. Reihe: Ein Lehrbuch des Math-College. Sangerhausen, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2004). Eine Einführung in das Tangentenproblem mit dem Voyage 200 - Die beste aller Geraden (eine schülergerechte und rechnergestützte Einführung in die Differenzialrechnung mit CAS). Reihe: Ein Lehrbuch des Math-College. Sangerhausen, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2004). Regeln für die Multiplikation rationaler Zahlen. Kopiervorlagen für den TI-30X II S. Sangerhausen, Deutschland: Schumanns Verlagshaus.
  • Schumann, F. (2004). Das Einmaleins des Voyage 200. Ein Strategiebuch für TI-CAS-Rechner. Reihe: Ein Lehrbuch des Math-College Sangerhausen, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2001). Terme mit dem Algebra FX 2.0 - Kopiervorlagen für den Mathematikunterricht der Sekundarstufe I, Hannover, Deutschland: Schumanns Verlagshaus. Lizenznehmer: CASIO Europe GmbH Norderstedt. PDF.
  • Schumann, F. (2000). Wie viel Bruchrechnung brauchen die SchülerInnen im 21. Jahrhundert? Eine CAS- und DGS-orientierte Einführung in die Bruchrechnung (mit Derive für Windows und Cabri Géomètre II für Windows). Zeitschrift: Mathe-Innovativ 2000/1 2-15. Hannover, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (2000). Wie finde ich bloß die Gleichung? – Heuristische Wege zum Lösen einfacher Text- und Sachaufgaben unter Einbeziehung von Computeralgebra (Lehrerhandreichung mit vielen Beispielen). Reihe: Math-College-Dokumente. Hannover, Deutschland: Schumanns Verlagshaus. PDF.
  • Henning, H. & Schumann, F. (2000). Einführung in die elementare Bedienung des Algebra FX 2.0 - Viele Beispiele aus Schule und Studium ausführlich dargestellt (Einführung in CAS-Rechner). Norderstedt, Deutschland: CASIO Europe GmbH.

1998 bis 1999

  • Schumann, F. (1999). Bruchrechnen lernen mit dem Computer – macht das Sinn? Zeitschrift: Mathe-Innovativ, 1999/1, 1-7. Hannover, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F.; Henning, H. (1999). Zuordnung nach Programm - Die Ursprungsgerade und ihre Anwendungen, Praktische Unterrichtshilfe für einen computerorientierten Mathematikunterricht in der Sekundarstufe I mit Derive für Windows und Cabri Géomètre II für Windows (Schülerausgabe & Lehrerausgabe als neuüberarbeitete Auflage). Reihe: Math-College-Dokumente. Hannover, Deutschland: Schumanns Verlagshaus.
  • Henning, H.; Schumann, F. (1999). Zuordnung nach Programm – ein didaktisches Modell im modernen Mathematikunterricht am Beispiel der Bestimmung der Sekantengleichung (Teil 1). Zeitschrift: Mathe-Innovativ, 1999/2, 2-11. Hannover, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F. (1999). Eine altbekannte Extremwertaufgabe im computerunterstützten Unterricht, Klasse 11. Zeitschrift: Mathe-Innovativ, 1999/4, 2-13. Hannover, Deutschland: Schumanns Verlagshaus. PDF.
  • Schumann, F.; Henning, H. (1999). Grundkonstruktionen, Geometrie mit Cabri Géomètre II für Windows. Arbeitsbuch & CD-ROM mit elektronischen Worksheets und Kopiervorlagen für die Klassen 5 bis 9 an Realschulen und Gymnasien. Reihe: Math-College-Dokumente. Hannover, Deutschland: Schumanns Verlagshaus.
  • Schumann, F. (1998). Funktionales Argumentieren im Algebraunterricht der unteren Klassen am Gymnasium. Berlin, Deutschland: Pädagogischer Zeitschriftenverlag. Zeitschrift: Mathematik in der Schule, 1998/1, 48-55.
  • Schumann, F. (1998). 14 Zusatzdateien für die Sekundarstufe I mit Cabri Géomètre II für Windows (Software 3,5" Diskette). Hannover, Deutschland: Math-College - Privates Institut für computerunterstütztes Lernen. PDF.
  • Schumann, F.; Henning, H. (1998). Zuordnungen nach Programm - Praktische Unterrichtshilfe für einen computerorientierten Mathematikunterricht in der Sekundarstufe I mit Derive für Windows und Cabri Géomètre II für Windows (Lehrerausgabe). Reihe: Math-College-Dokumente. Hannover, Deutschland: Math-College - Privates Institut für computerunterstütztes Lernen.

Herausgebertätigkeit

  • Löffler, I. (2006). Informationen aus Sätzen verstehen lernen. Mein-Aussagen (Teil 3). Zeitschrift: In Mathe einfach besser, 2006/1, 9-15. Wertheim, Deutschland: Schumanns Verlagshaus. Liste: Artikel.
  • Löffler, I. (2005). Informationen aus Sätzen verstehen lernen. Mein-Aussagen (Teil 2). Zeitschrift: In Mathe einfach besser, 2005/2, 15-23. Wertheim, Deutschland: Schumanns Verlagshaus. Liste: Artikel.
  • Löffler, I. (2005). Informationen aus Sätzen verstehen lernen (Teil 1). Zeitschrift: In Mathe einfach besser, 2005/1, 2-10. Wertheim, Deutschland: Schumanns Verlagshaus. Liste: Artikel.
  • Henning, H. (2004). Das TI-84 Plus Buch - Eine beispielorientierte Einführung in die Bedienung der TI-Grafikrechner-Familie. Reihe: Ein Lehrbuch des Math-College. Sangerhausen, Deutschland: Schumanns Verlagshaus. Liste: Artikel.
  • Henning, H. (2002-2004). 29 Kopiervorlagen aus Erfolgreicher Start mit der TI-83-Serie, Teil 1-3. Reihe: Mathe-Innovativ. Sangerhausen, Deutschland: Schumanns Verlagshaus. Liste: Kopiervorlagen.
  • Henning, H. (2002). Erfolgreicher Start mit der TI-83-Serie - Teil 1 - Eine beispielorientierte Einführung in die Bedienung der TI-Grafikrechner-Familie.Reihe: Mathe-Innovativ. Sangerhausen, Deutschland: Schumanns Verlagshaus. Liste: Kopiervorlagen.
  • Henning, H. (2002). Erfolgreicher Start mit der TI-83-Serie - Teil 2 - Eine beispielorientierte Einführung in die Bedienung der TI-Grafikrechner-Familie.Reihe: Mathe-Innovativ. Sangerhausen, Deutschland: Schumanns Verlagshaus. Liste: Kopiervorlagen.
  • Henning, H. (1999). Zuordnung nach Programm – ein didaktisches Modell im modernen Mathematikunterricht am Beispiel der Bestimmung der Sekantengleichung (Teil 2). Hannover, Deutschland: Schumanns Verlagshaus. Zeitschrift: Mathe-Innovativ, 1999/3, 2-8. Liste: Artikel.
  • Klejmann, J. (1999). Mathebox-Grundschule 1.0, (Software 3,5" Disketten). Hannover, Deutschland: Math-College - Privates Institut für computerunterstütztes Lernen.
  • Klejmann, J. (1998). Stack-Kalkulator 2.0 - Ein interaktives Rechenprogramm mit zahlreichen Darstellungs-, Animations- und Simulationsmöglichkeiten (Software 3,5" Diskette). Hannover, Deutschland: Math-College - Privates Institut für computerunterstütztes Lernen.