1.571
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
[unmarkierte Version] | [gesichtete Version] |
Uhlig (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
|||
(6 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
[[Kategorie:Computer im Unterricht]] | |||
<!-- Dissertationen grundsätzlich mit der folgenden Vorlage "diss" erstellen! --> | <!-- Dissertationen grundsätzlich mit der folgenden Vorlage "diss" erstellen! --> | ||
<!-- Falls Sie weitere Angaben machen möchten, dann bitte im darauf folgenden Freitext. --> | <!-- Falls Sie weitere Angaben machen möchten, dann bitte im darauf folgenden Freitext. --> | ||
Zeile 6: | Zeile 8: | ||
| hochschule= Universität Salzburg <!-- Name der Hochschule --> | | hochschule= Universität Salzburg <!-- Name der Hochschule --> | ||
| jahr = 2005 <!-- Jahr der Promotion --> | | jahr = 2005 <!-- Jahr der Promotion --> | ||
| betreut1 = <!-- Erstbetreuer/in --> | | betreut1 = Karl Josef Fuchs <!-- Erstbetreuer/in --> | ||
| betreut2 = <!-- Zweitbetreuer/in --> | | betreut2 = <!-- Zweitbetreuer/in --> | ||
| begutachtet1 = Karl Josef Fuchs <!-- Erstgutachter/in --> | | begutachtet1 = Karl Josef Fuchs <!-- Erstgutachter/in --> | ||
Zeile 24: | Zeile 26: | ||
In meiner Dissertation versuche ich einen anwendungsbezogenen Zugang zur [[Modellieren|Modellbildung]] im Schulunterricht aufzuzeigen. Zusätzlich möchte ich aber auch die Bedeutung der Modellbildung bei innermathematischen Problemen deutlich machen. Modellbilden kommt im Mathematikunterricht eine immer zentralere Rolle zu. Dies finde ich auch unbedingt notwendig, denn somit erhalten die Schüler die Möglichkeit in ihrem Unterricht zu konstruieren und zu experimentieren. | In meiner Dissertation versuche ich einen anwendungsbezogenen Zugang zur [[Modellieren|Modellbildung]] im Schulunterricht aufzuzeigen. Zusätzlich möchte ich aber auch die Bedeutung der Modellbildung bei innermathematischen Problemen deutlich machen. Modellbilden kommt im Mathematikunterricht eine immer zentralere Rolle zu. Dies finde ich auch unbedingt notwendig, denn somit erhalten die Schüler die Möglichkeit in ihrem Unterricht zu konstruieren und zu experimentieren. | ||
Zur Übersicht stelle ich im ersten Kapitel der Arbeit verschiedene didaktische Modelle vor und vergleiche sie untereinander: | Zur Übersicht stelle ich im ersten Kapitel der Arbeit verschiedene didaktische Modelle vor und vergleiche sie untereinander: | ||
* Modellbildung als | * Modellbildung als fundamentale Idee | ||
* Modellbildung nach [[Werner Blum|Blum]] | * Modellbildung nach [[Werner Blum|Blum]] | ||
* Modellbildung nach [[Tietze]], [[Klika]], [[Wolpers]] | * Modellbildung nach [[Uwe-Peter Tietze|Tietze]], [[Manfred Klika|Klika]], [[Hans Wolpers|Wolpers]] | ||
* Modellbildung nach [[Weigand]], [[Weller]] | * Modellbildung nach [[Hans-Georg Weigand|Weigand]], [[Hubert Weller|Weller]] | ||
Da die Modellbildung aber ein äußerst komplexes Gebiet ist, werden in der Arbeit ausführlich Grenzen und Möglichkeiten der mathematischen Modellierung behandelt. | Da die Modellbildung aber ein äußerst komplexes Gebiet ist, werden in der Arbeit ausführlich Grenzen und Möglichkeiten der mathematischen Modellierung behandelt. | ||
In den weiteren Kapiteln werden praktische Anwendungsaufgaben dargestellt. Im Kapitel „Modellbilden bei [[Extremwertaufgaben]]“ bereite ich anhand von Aufgaben, die der Erfahrungswelt der Schüler entnommen sind, die wesentlichen Punkte des Modellbildungsprozesses für Schüler und Lehrer auf. Damit sollte eine Übertragung des Modellierungsprozesses keine weiteren Schwierigkeiten bereiten. | In den weiteren Kapiteln werden praktische Anwendungsaufgaben dargestellt. Im Kapitel „Modellbilden bei [[Extremwertaufgaben]]“ bereite ich anhand von Aufgaben, die der Erfahrungswelt der Schüler entnommen sind, die wesentlichen Punkte des Modellbildungsprozesses für Schüler und Lehrer auf. Damit sollte eine Übertragung des Modellierungsprozesses keine weiteren Schwierigkeiten bereiten. | ||
Zeile 40: | Zeile 42: | ||
* Zweiter Preis | * Zweiter Preis | ||
--> | --> | ||
== Kontext == | == Kontext == | ||
Zeile 50: | Zeile 48: | ||
die sich mit dem Thema beschäftigen, etc. --> | die sich mit dem Thema beschäftigen, etc. --> | ||
===Literatur=== | ===Literatur=== | ||
* [[Werner Blum]], [[G. | * [[Werner Blum|Blum, W.]], [[Günter Törner|Törner, G.]]: Didaktik der Analysis, Moderne Mathematik in elementarer Darstellung 20, Vandenhoeck und Ruprecht, 1983 | ||
* [[H. | * [[Horst Hischer|Hischer, H.]]: Modellbildung, Computer und Mathematikunterricht, Hildesheim, Berlin, Franzbecker, 2000, S. 5-6 | ||
* [[ | * [[Hans Humenberger|Humenberger, H.]]; [[Hans-Christian Reichel|Reichel, H.-Ch.]]: Fundamentale Ideen der angewandten Mathematik und ihre Umsetzung im Unterricht. BI-Wiss.-Verl., Mannheim; Leipzig; Wien; Zürich, 1995 | ||
* [[A. | * [[Angela Poltschak|Poltschak, A.]]: Interdisziplinäre Unterrichtsansätze in Musik und Mathematik: Theoretische Grundlagen und praktische Modelle (Diplomarbeit), Salzburg, 2005 | ||
* [[F. | * [[Fritz Schweiger|Schweiger, F.]]: Stetigkeit – eine ´fundamentale Idee´ der Mathematik, Mathematik im Unterricht, S. 1., 8/1984 | ||
* [[H.-St. | * [[Hans-Stefan Siller|Siller, H.-St.]]: Auf Mathematica basierende Lerneinheiten zur fundamentalen Idee der Modellbildung illustriert an Extremwertbeispielen und Beispielen der Integralrechnung mit M@th Desktop. Diplomarbeit, Graz, 2002 | ||
* [[H.-St. | * [[Hans-Stefan Siller|Siller, H.-St.]], [[Karl Josef Fuchs|Fuchs, K.J.]]: Modellbilden bei Extremwertaufgaben, [[PM]], H. 2, 2004, S. 49–54 | ||
* [[H.-G. | * [[Hans-Georg Weigand|Weigand, H.-G.]], [[Hubert Weller|Weller, H.]]: Das Lösen realitätsorientierter Aufgaben zu periodischen Vorgängen mit Computeralgebra. In: [[ZDM]] Heft 5, 1997, S. 162–169 | ||
*Fuchs, K.J. (Hrsg.). Modellbilden – eine zentrale Leitidee der Mathematik, 256S., ISBN: 978-3-8322-7211-1 | |||