Modellbilden – eine zentrale Leitidee der Mathematik: Unterschied zwischen den Versionen

keine Bearbeitungszusammenfassung
[unmarkierte Version][gesichtete Version]
Keine Bearbeitungszusammenfassung
 
(6 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
[[Kategorie:Computer im Unterricht]]
<!-- Dissertationen grundsätzlich mit der folgenden Vorlage "diss" erstellen! -->
<!-- Dissertationen grundsätzlich mit der folgenden Vorlage "diss" erstellen! -->
<!-- Falls Sie weitere Angaben machen möchten, dann bitte im darauf folgenden Freitext. -->
<!-- Falls Sie weitere Angaben machen möchten, dann bitte im darauf folgenden Freitext. -->
Zeile 6: Zeile 8:
| hochschule=  Universität Salzburg  <!-- Name der Hochschule -->  
| hochschule=  Universität Salzburg  <!-- Name der Hochschule -->  
| jahr = 2005                                                    <!-- Jahr der Promotion -->
| jahr = 2005                                                    <!-- Jahr der Promotion -->
| betreut1 =                                            <!-- Erstbetreuer/in -->  
| betreut1 = Karl Josef Fuchs                                             <!-- Erstbetreuer/in -->  
| betreut2 =                                              <!-- Zweitbetreuer/in -->
| betreut2 =                                              <!-- Zweitbetreuer/in -->
| begutachtet1 = Karl Josef Fuchs                                    <!-- Erstgutachter/in -->
| begutachtet1 = Karl Josef Fuchs                                    <!-- Erstgutachter/in -->
Zeile 24: Zeile 26:
In meiner Dissertation versuche ich einen anwendungsbezogenen Zugang zur [[Modellieren|Modellbildung]] im Schulunterricht aufzuzeigen. Zusätzlich möchte ich aber auch die Bedeutung der  Modellbildung bei innermathematischen Problemen deutlich machen. Modellbilden kommt im Mathematikunterricht eine immer zentralere Rolle zu. Dies finde ich auch unbedingt notwendig, denn somit erhalten die Schüler die Möglichkeit in ihrem Unterricht zu konstruieren und zu experimentieren.
In meiner Dissertation versuche ich einen anwendungsbezogenen Zugang zur [[Modellieren|Modellbildung]] im Schulunterricht aufzuzeigen. Zusätzlich möchte ich aber auch die Bedeutung der  Modellbildung bei innermathematischen Problemen deutlich machen. Modellbilden kommt im Mathematikunterricht eine immer zentralere Rolle zu. Dies finde ich auch unbedingt notwendig, denn somit erhalten die Schüler die Möglichkeit in ihrem Unterricht zu konstruieren und zu experimentieren.
Zur Übersicht stelle ich im ersten Kapitel der Arbeit verschiedene didaktische Modelle vor und vergleiche sie untereinander:
Zur Übersicht stelle ich im ersten Kapitel der Arbeit verschiedene didaktische Modelle vor und vergleiche sie untereinander:
* Modellbildung als [[fundamentale Idee]]
* Modellbildung als fundamentale Idee
* Modellbildung nach [[Werner Blum|Blum]]
* Modellbildung nach [[Werner Blum|Blum]]
* Modellbildung nach [[Tietze]], [[Klika]], [[Wolpers]]
* Modellbildung nach [[Uwe-Peter Tietze|Tietze]], [[Manfred Klika|Klika]], [[Hans Wolpers|Wolpers]]
* Modellbildung nach [[Weigand]], [[Weller]]
* Modellbildung nach [[Hans-Georg Weigand|Weigand]], [[Hubert Weller|Weller]]
Da die Modellbildung aber ein äußerst komplexes Gebiet ist, werden in der Arbeit ausführlich Grenzen und Möglichkeiten der mathematischen Modellierung behandelt.
Da die Modellbildung aber ein äußerst komplexes Gebiet ist, werden in der Arbeit ausführlich Grenzen und Möglichkeiten der mathematischen Modellierung behandelt.
In den weiteren Kapiteln werden praktische Anwendungsaufgaben dargestellt. Im Kapitel „Modellbilden bei [[Extremwertaufgaben]]“ bereite ich anhand von Aufgaben, die der Erfahrungswelt der Schüler entnommen sind, die wesentlichen Punkte des Modellbildungsprozesses für Schüler und Lehrer auf. Damit sollte eine Übertragung des Modellierungsprozesses keine weiteren Schwierigkeiten bereiten.
In den weiteren Kapiteln werden praktische Anwendungsaufgaben dargestellt. Im Kapitel „Modellbilden bei [[Extremwertaufgaben]]“ bereite ich anhand von Aufgaben, die der Erfahrungswelt der Schüler entnommen sind, die wesentlichen Punkte des Modellbildungsprozesses für Schüler und Lehrer auf. Damit sollte eine Übertragung des Modellierungsprozesses keine weiteren Schwierigkeiten bereiten.
Zeile 40: Zeile 42:
* Zweiter Preis
* Zweiter Preis
-->
-->
== Schlagworte ==
<!-- Bitte Schlagworte mit [[...]] umschließen, um auf die Enzyklopädie zu verweisen -->
[[Modellieren]],  [[Computer im Mathematikunterricht]]


== Kontext ==
== Kontext ==
Zeile 50: Zeile 48:
           die sich mit dem Thema beschäftigen, etc. -->
           die sich mit dem Thema beschäftigen, etc. -->
===Literatur===
===Literatur===
* [[Werner Blum]], [[G. Törner]]: Didaktik der Analysis, Moderne Mathematik in elementarer Darstellung 20, Vandenhoeck und Ruprecht, 1983
* [[Werner Blum|Blum, W.]], [[Günter Törner|Törner, G.]]: Didaktik der Analysis, Moderne Mathematik in elementarer Darstellung 20, Vandenhoeck und Ruprecht, 1983
* [[H. Hischer]]: Modellbildung, Computer und Mathematikunterricht, Hildesheim, Berlin, Franzbecker, 2000, S. 5-6
* [[Horst Hischer|Hischer, H.]]: Modellbildung, Computer und Mathematikunterricht, Hildesheim, Berlin, Franzbecker, 2000, S. 5-6
* [[J. Humenberger]]; Reichel, H.-Ch.: Fundamentale Ideen der angewandten Mathematik und ihre Umsetzung im Unterricht. BI-Wiss.-Verl., Mannheim; Leipzig; Wien; Zürich, 1995
* [[Hans Humenberger|Humenberger, H.]]; [[Hans-Christian Reichel|Reichel, H.-Ch.]]: Fundamentale Ideen der angewandten Mathematik und ihre Umsetzung im Unterricht. BI-Wiss.-Verl., Mannheim; Leipzig; Wien; Zürich, 1995
* [[A. Poltschak]]: Interdisziplinäre Unterrichtsansätze in Musik und Mathematik: Theoretische Grundlagen und praktische Modelle (Diplomarbeit), Salzburg, 2005
* [[Angela Poltschak|Poltschak, A.]]: Interdisziplinäre Unterrichtsansätze in Musik und Mathematik: Theoretische Grundlagen und praktische Modelle (Diplomarbeit), Salzburg, 2005
* [[F. Schweiger]]: Stetigkeit – eine ´fundamentale Idee´ der Mathematik, Mathematik im Unterricht, S. 1., 8/1984
* [[Fritz Schweiger|Schweiger, F.]]: Stetigkeit – eine ´fundamentale Idee´ der Mathematik, Mathematik im Unterricht, S. 1., 8/1984
* [[H.-St. Siller]]: Auf Mathematica basierende Lerneinheiten zur fundamentalen Idee der Modellbildung illustriert an Extremwertbeispielen und Beispielen der Integralrechnung mit M@th Desktop. Diplomarbeit, Graz, 2002
* [[Hans-Stefan Siller|Siller, H.-St.]]: Auf Mathematica basierende Lerneinheiten zur fundamentalen Idee der Modellbildung illustriert an Extremwertbeispielen und Beispielen der Integralrechnung mit M@th Desktop. Diplomarbeit, Graz, 2002
* [[H.-St. Siller]] [[K.J. Fuchs]]: Modellbilden bei Extremwertaufgaben, PM, H. 2, 2004, S. 49–54
* [[Hans-Stefan Siller|Siller, H.-St.]], [[Karl Josef Fuchs|Fuchs, K.J.]]: Modellbilden bei Extremwertaufgaben, [[PM]], H. 2, 2004, S. 49–54
* [[H.-G. Weigand]], [[H. Weller]]: Das Lösen realitätsorientierter Aufgaben zu periodischen Vorgängen mit Computeralgebra. In: ZDM Heft 5, 1997, S. 162–169
* [[Hans-Georg Weigand|Weigand, H.-G.]], [[Hubert Weller|Weller, H.]]: Das Lösen realitätsorientierter Aufgaben zu periodischen Vorgängen mit Computeralgebra. In: [[ZDM]] Heft 5, 1997, S. 162–169
== Diskussion ==
*Fuchs, K.J. (Hrsg.). Modellbilden – eine zentrale Leitidee der Mathematik, 256S., ISBN: 978-3-8322-7211-1
<!-- Hier kann kritisch (aber sachlich) zur Arbeit Stellung genommen werden. -->
 
 
 
<!-- NICHT LÖSCHEN -->
<!--Bitte bei den passenden Kategorien die Kommentarbefehle ( < !-- … -- > ) entfernen-->
<!--[[Kategorie: Dissertationen (DDR)]]-->
<!--[[Kategorie: Dissertationen (Mengenlehre)]]-->
<!--[[Kategorie: Dissertationen (Lehrmittel)]]-->
<!--[[Kategorie: Dissertationen (Stochastik)]]-->
<!--[[Kategorie: Dissertationen (Lernstrategie)]]-->
<!--[[Kategorie: Dissertationen (Geometrie)]]-->
[[Kategorie: Dissertationen (Kompetenzen)]]
<!--[[Kategorie: Dissertationen (Computer)]]-->
<!--[[Kategorie: Dissertationen (Analysis)]]-->
<!--[[Kategorie: Dissertationen (Methodik)]]-->
<!--[[Kategorie: Dissertationen (Beweisen)]]-->
<!--[[Kategorie: Dissertationen (Algebra)]]-->
[[Kategorie: Dissertationen (Österreich)]]
<!--[[Kategorie: Dissertationen (Grundschule)]]-->
<!--[[Kategorie: Dissertationen (Gymnasium)]]-->
<!--[[Kategorie: IDM21/1979]]-->
<!--[[Kategorie:IDM13/1977]]-->