Extremwertaufgaben: Unterschied zwischen den Versionen

K
keine Bearbeitungszusammenfassung
[unmarkierte Version][gesichtete Version]
(einfügen von Verlinkungen)
KKeine Bearbeitungszusammenfassung
 
(17 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 8: Zeile 8:




„Unter ''Extremwertaufgaben'' versteht man Textaufgaben, bei denen eine Größe unter Beachtung einer Nebenbedingung maximiert bzw. minimiert werden soll. Die Aufgaben sind in der Regel so geartet, dass man eine [[Funktion]] von zwei Veränderlichen[Variablen] unter Benutzung einer Gleichung für die Nebenbedingung in eine Funktion einer Veränderlichen umwandelt, für die man dann die Extremstellen bestimmt. Durch den Vergleich aller lokalen Maximal- bzw. Minimalwerte in dem durch die Aufgabe gegebenen Gültigkeitsintervalls untereinander und mit den Werten am Rand des Intervalls gelangt man zu einer Lösung.“<ref>Tietze, U.; Klika, M.; Wolpers, H.(1997): Mathematikunterricht in der Sekundarstufe II. Band 1: Fachdidaktische Grundfragen. Didaktik der Analysis. Vieweg Verlag</ref>
„Unter ''Extremwertaufgaben'' versteht man Textaufgaben, bei denen eine Größe unter Beachtung einer Nebenbedingung maximiert bzw. minimiert werden soll. Die Aufgaben sind in der Regel so geartet, dass man eine [[Funktion]] von zwei Veränderlichen [Variablen] unter Benutzung einer Gleichung für die Nebenbedingung in eine Funktion einer Veränderlichen umwandelt, für die man dann die Extremstellen bestimmt. Durch den Vergleich aller lokalen Maximal- bzw. Minimalwerte in dem durch die Aufgabe gegebenen Gültigkeitsintervalls untereinander und mit den Werten am Rand des Intervalls gelangt man zu einer Lösung.“<ref>[[Uwe-Peter Tietze|Tietze, U.]]; [[Manfred Klika|Klika, M.]]; Wolpers, H.(1997): Mathematikunterricht in der Sekundarstufe II. Band 1: Fachdidaktische Grundfragen. Didaktik der Analysis. Vieweg Verlag</ref>
 


==Algorithmus zur Lösung von Extremwertaufgaben==
==Algorithmus zur Lösung von Extremwertaufgaben==


===Allgemeiner Algorithmus<ref>Danckwerts,R.; Vogel, D. (2006): Analysis verständlich unterrichten. Spektrum AkademischerVerlag</ref>===  
===Allgemeiner Algorithmus<ref>[[Rainer Danckwerts|Danckwerts, R.]]; Vogel, D. (2006): Analysis verständlich unterrichten. Spektrum AkademischerVerlag</ref>===  


1.Schritt:  Welche Größe ist zu optimieren? Stellen Sie eine Funktion(Zielfunktion) auf um diese Größe zu berechnen. Bestimmen Sie den [[Definitionsbereich]] der Funktion.
1.Schritt:  Welche Größe ist zu optimieren? Stellen Sie eine Funktion (Zielfunktion) auf um diese Größe zu berechnen. Bestimmen Sie den [[Definitionsbereich]] der Funktion.


2.Schritt:  Von wie vielen Variablen hängt diese Funktion ab? Sind Variablen zu eliminieren? Suchen Sie nach Nebenbedingungen.
2.Schritt:  Von wie vielen Variablen hängt diese Funktion ab? Sind Variablen zu eliminieren? Suchen Sie nach Nebenbedingungen.
Zeile 27: Zeile 26:




->Ähnliche Algorithmen finden sich bei: <ref>Frank, B.; Schulz, W.; Tietz, W.;Warmuth, E. (2004): Wissensspeicher Mathematik. Cornelsen Verlag</ref> und <ref>Seeger, H.: Mathematik. Prüfungs- und Basiswissen der Oberstufe. Tandem Verlag</ref>
<math> \rightarrow </math> Ähnliche Algorithmen finden sich bei: <ref>Frank, B.; Schulz, W.; Tietz, W.; [[Elke Warmuth|Warmuth, E.]] (2004): Wissensspeicher Mathematik. Cornelsen Verlag</ref> und <ref>Seeger, H.: Mathematik. Prüfungs- und Basiswissen der Oberstufe. Tandem Verlag</ref>




Zeile 33: Zeile 32:




''Welche Abmessungen muss eine Dose mit einem Volumen von 1l haben, damit möglichst wenig Material für ihre Herstellung benötigt wird?''
''Welche Abmessungen muss eine Dose mit einem Volumen von <math> 1l </math> haben, damit möglichst wenig Material für ihre Herstellung benötigt wird?''


(Dies ist eine Standardaufgabe bei der Behandlung von Extremwertaufgaben, welche sich so, oder so ähnlich in vielen Lehrbüchern wiederfindet.)
(Dies ist eine Standardaufgabe bei der Behandlung von Extremwertaufgaben, welche sich so oder so ähnlich in vielen Lehrbüchern wiederfindet.)




1. Zu optimieren ist der Oberflächeninhalt A der Dose (eines Zylinders).
1. Zu optimieren ist der Oberflächeninhalt <math> A </math> der Dose (eines Zylinders).


A = 2πr² + 2πrh
<math>
A = 2\pi r^2 + 2\pi rh
</math>


Da r und h Strecken darstellen, sind r und h positive reelle Zahlen und größer als Null.
Da <math> r </math> und <math> h </math> Strecken darstellen, sind <math> r </math> und <math> h </math> positive reelle Zahlen und größer als Null.




2. A = (r)² + (r)[h]
2.  
<math>
A = 2\pi (r)^2 + 2\pi (r)[h]
</math>


A hängt zunächst von den beiden Variablen r und h ab, folglich muss über die Nebenbedingung V = 1l = 1dm³ = 1.000cm³ eine der beiden Variablen ersetzt werden(beispielsweise h).
<math> A </math> hängt zunächst von den beiden Variablen <math> r </math> und <math> h </math> ab, folglich muss über die Nebenbedingung <math> V = 1l = 1dm^3 = 1.000cm^3 </math> eine der beiden Variablen ersetzt werden (beispielsweise <math> h </math>).


V = πr²h -> h = V/(πr²) = 1000/(πr²)    (h bzw. r sind in cm anzugeben)
<math> V = \pi r^2h </math> <math> \Rightarrow </math> <math> h = \frac{V}{\pi r^2} = \frac{1000}{\pi r^2} </math>  (<math> h </math> bzw. <math> r </math> sind in <math> cm </math> anzugeben)


3. A = 2πr² + 2000/r


A´ = 4πr - 2000/r²


0 = 4πr - 2000/r²
3.


-> r ≈ 5,419cm
<math>
\begin{eqnarray}
A &= &2\pi r^2 + \frac{2000}{r}\\
A' &= &4\pi r - \frac{2000}{r^2}\\
0& =& 4\pi r - \frac{2000}{r^2}\\
&\rightarrow& r ≈ 5,419cm  
\end{eqnarray}</math>


A´´ = + 4000/> 0 für alle r > 0   -> lokales Minimum bei r ≈ 5,419cm
<math>
A'' = 4\pi + \frac{4000}{r^3} > 0 </math> für alle <math> r > 0 </math>  -> lokales Minimum bei <math> r ≈ 5,419cm </math>




4. Betrachtet man den Grenzwert für r gegen Null, bzw. für r gegen unendlich, so wird auch der Oberflächeninhalt A unendlich groß. Da es kein weiteres Minimum gibt, ist das oben berechnete lokale Minimum auch das globale Minimum dieser Funktion.
4. Betrachtet man den Grenzwert für <math> r </math> gegen Null, bzw. für <math> r </math> gegen unendlich, so wird auch der Oberflächeninhalt <math> A </math> unendlich groß. Da es kein weiteres Minimum gibt, ist das oben berechnete lokale Minimum auch das globale Minimum dieser Funktion.




5. r ist bereits unter 3. berechnet wurden. h ergibt sich aus V = πr²h und beträgt rund 10,839cm. Demnach betragen die optimalen Maße einer Dose mit einem Volumen von einem Liter: r ≈ 5,419cm und h ≈ 10,839cm.
5. <math> r </math> ist bereits unter 3. berechnet wurden. <math> h </math> ergibt sich aus <math> V = \pi r^2h </math> und beträgt rund <math> 10,839cm </math>. Demnach betragen die optimalen Maße einer Dose mit einem Volumen von einem Liter: <math> r ≈ 5,419cm </math> und <math> h ≈ 10,839cm </math>.


==Kognitive Probleme von Schülerinnen und Schülern==
==Kognitive Probleme von Schülerinnen und Schülern==
Zeile 74: Zeile 83:
Folgende kognitive Probleme können Schülerinnen und Schülern beim Umgang mit Extremwertaufgaben begegnen:
Folgende kognitive Probleme können Schülerinnen und Schülern beim Umgang mit Extremwertaufgaben begegnen:


* Es kann ihnen schwer fallen Haupt- und Nebenbedingungen zu finden und diese zu unterscheiden, bzw. in Formeln auszudrücken, falls sie in Textform gegeben sind.
* Es kann ihnen schwer fallen, Haupt- und Nebenbedingungen zu finden und diese zu unterscheiden, bzw. in Formeln auszudrücken, falls sie in Textform gegeben sind.


* Extremwertaufgaben können komplexe Sachverhalte beinhalten und/oder sich an praktischen Problemen orientieren, sodass die Schülerinnen und Schüler die rein mathematische Lösung auf diese übertragen müssen.
* Extremwertaufgaben können komplexe Sachverhalte beinhalten und/oder sich an praktischen Problemen orientieren, sodass die Schülerinnen und Schüler die rein mathematische Lösung auf diese übertragen müssen.
Zeile 82: Zeile 91:
*Extremwertaufgaben aus Lehrbüchern können den Schülerinnen und Schülern bisher unbekannte Formulierungen enthalten und somit die Mathematisierung des Aufgabentextes erschweren.
*Extremwertaufgaben aus Lehrbüchern können den Schülerinnen und Schülern bisher unbekannte Formulierungen enthalten und somit die Mathematisierung des Aufgabentextes erschweren.


* Viele Extremwertaufgaben sind eindeutig lösbar, jedoch entstehen im Rahmen der Kompetenzorientierung, hinsichtlich der Modellierungskompetenz, auch Modellierungsaufgaben ohne eindeutige Lösung, was für Schülerinnen und Schüler ungewohnt sein kann.
* Viele Extremwertaufgaben sind eindeutig lösbar, jedoch entstehen hinsichtlich der [[Modellierungskompetenz]] im Rahmen der Kompetenzorientierung auch Modellierungsaufgaben ohne eindeutige Lösung, was für Schülerinnen und Schüler ungewohnt sein kann.


* Für Schülerinnen und Schüler könnte es irritierend sein, dass nicht alle mathematischen Lösungen auch gleichzeitig Lösungen des praktischen Problems darstellen und das sie dies begründen müssen.
* Für Schülerinnen und Schüler könnte es irritierend sein, dass nicht alle mathematischen Lösungen auch gleichzeitig Lösungen des praktischen Problems darstellen und dass sie dies begründen müssen.


==Quellen==
==Quellen==