Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Baustelle:Funktionsgraph neu: Unterschied zwischen den Versionen

Aus dev_madipedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
 
(17 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
[[Datei:Schaubild_1.png|thumb|right|300px|<b>Schaubild</b> einer abstrakten diskreten Funktion]]
[[Datei:Schaubild_2.png|thumb|right|300px|<b>Schaubild</b> einer konkreten diskreten Funktion: Zeitabhängigkeit der Temperaturentwicklung]]
[[Datei:Schaubild_3.png|thumb|right|300px|<b>Schaubild</b> einer kontinuierlichen Funktion: Modellfunktion zum Zeit-Weg-Gesetz einer gleichmäßig beschleunigten Bewegung]]
== Übersicht ==
== Übersicht ==
* Streng genommen ist zwischen „Funktionsgraph“ (als Menge geordneter Paare) und der visualisierenden Darstellung durch ein „Schaubild“ zu unterscheiden:<br />
* Streng genommen ist zwischen „Funktionsgraph“ (als Menge geordneter Paare) und der visualisierenden Darstellung durch ein „Schaubild“ zu unterscheiden:<br />
Zeile 6: Zeile 10:
Der Funktionsgraph einer ([[Funktion:_mengentheoretische_Auffassung#einstellige Funktion|einstelligen]]) Funktion [math]f[/math] von <math>A</math> in <math>B</math> besteht also aus allen geordneten Paaren <math>(x,f(x))</math> mit <math>x\in A</math> und <math>f(x)\in B</math>.<br /> (Dabei ist <math>A</math> die ''Definitionsmenge'' von <math>f</math>, die kurz mit <math>{{\operatorname{D}}_{f}}</math> bezeichnet wird. Die Einschränkung auf einstellige Funktionen ist nicht notwendig, wenngleich sie aber in den meisten unterrichtsrelevanten Fällen üblich ist.)
Der Funktionsgraph einer ([[Funktion:_mengentheoretische_Auffassung#einstellige Funktion|einstelligen]]) Funktion [math]f[/math] von <math>A</math> in <math>B</math> besteht also aus allen geordneten Paaren <math>(x,f(x))</math> mit <math>x\in A</math> und <math>f(x)\in B</math>.<br /> (Dabei ist <math>A</math> die ''Definitionsmenge'' von <math>f</math>, die kurz mit <math>{{\operatorname{D}}_{f}}</math> bezeichnet wird. Die Einschränkung auf einstellige Funktionen ist nicht notwendig, wenngleich sie aber in den meisten unterrichtsrelevanten Fällen üblich ist.)
== Visualisierung von Funktionsgraphen ==
== Visualisierung von Funktionsgraphen ==
* Funktionsgraphen lassen sich z. B. in einem kartesischen [[Koordinatensystem]] visualisieren, indem die geordneten Paare <math>(x,f(x))</math> durch „Punkte“ (naiv zu verstehen!) mit der „Abszisse“ <math>x</math> (nach rechts auf der ''Rechtsachse'' bzw. der ''1. Koordinatenachse'') und der „Ordinate“ <math>f(x)</math> (nach oben auf der ''Hochachse'' bzw. der ''2. Koordinatenachse'') abgetragen werden. Insbesondere Funktionsgraphen reeller Funktionen werden auf diese Weise visualisiert.
* Funktionsgraphen lassen sich z. B. in einem kartesischen [[Koordinatensystem]] visualisieren, indem die geordneten Paare <math>(x,f(x))</math> durch „Punkte“ mit der ''Abszisse'' <math>x</math> (nach rechts auf der ''Rechtsachse'' bzw. der ''1. Koordinatenachse'') und der ''Ordinate'' <math>f(x)</math> (nach oben auf der ''Hochachse'' bzw. der ''2. Koordinatenachse'') abgetragen werden. Insbesondere Funktionsgraphen reeller Funktionen werden auf diese Weise visualisiert.
* Anstelle eines kartesischen Koordinatensystems sind auch andere zweidimensionale Koordinatensysteme möglich, z. B. Polarkoordinatensysteme. Und auch dreidimensionale Koordinatensysteme (z. B. für kartesische Koordinaten, Zylinderkoordinaten, Kugelkoordinaten) können einer Visualisierung dienen, so etwa von Raumkurven oder Flächen.)
* Anstelle eines kartesischen Koordinatensystems sind auch andere zweidimensionale Koordinatensysteme möglich, z. B. Polarkoordinatensysteme. Und auch dreidimensionale Koordinatensysteme (z. B. für kartesische Koordinaten, Zylinderkoordinaten, Kugelkoordinaten) können einer Visualisierung dienen, so etwa von Raumkurven oder Flächen.)
* Solche Visualisierungen können insbesondere ''zeichnerisch'' (von Hand als Skizze oder mit Hilfe von Zeicheninstrumenten) oder mit Hilfe von [[Funktionenplotter|''Funktionenplottern'']] erfolgen. Die dabei erzeugten Zeichnungen oder [[Funktionenplotter|''Funktionsplots'']] sind aber nur [[Darstellungsarten_von_Funktionen|''Darstellungen'']] eines gegebenen Funktionsgraphen und nicht mit diesem identisch. Jede solche visualisierende Darstellung ist ein [[Schaubild_einer_Funktion|'''Schaubild''']] des Funktionsgraphen und also solche nur eine [[Funktionenplotter#Simulation_Funktionsgraph|''Simulation'']] des Graphen bzw. der Funktion. Solche Schaubilder sind ''ikonische Repräsentationen'' einer Funktion.
* Solche Visualisierungen können insbesondere ''zeichnerisch'' (von Hand als Skizze oder mit Hilfe von Zeicheninstrumenten) oder mit Hilfe von [[Funktionenplotter|''Funktionenplottern'']] erfolgen. Die dabei erzeugten Zeichnungen oder [[Funktionenplotter|''Funktionsplots'']] sind aber nur [[Darstellungsarten_von_Funktionen|''Darstellungen'']] eines gegebenen Funktionsgraphen und nicht mit diesem identisch. Jede solche visualisierende Darstellung ist ein [[Schaubild_einer_Funktion|'''Schaubild''']] des Funktionsgraphen und also solche nur eine [[Funktionenplotter#Simulation_Funktionsgraph|''Simulation'']] des Graphen bzw. der Funktion. Solche Schaubilder sind ''ikonische Repräsentationen'' einer Funktion.
* Ein (formaler) '''Funktionsgraph''' wird also durch ein (konkretes) '''Schaubild''' visualisiert und ist von diesem zu unterscheiden.
* Ein (formaler) '''Funktionsgraph''' wird also durch ein (konkretes) '''Schaubild''' visualisiert und ist von diesem zu unterscheiden.
* Einem konkreten Funktionsgraphen kann man verschiedene Schaubilder zuordnen.
* Einem konkreten Funktionsgraphen kann man verschiedene Schaubilder zuordnen.
* Legt man die mengentheoretische Identität einer Funktion <math>f</math> gemäß <math>f=\{(x,f(x))|x\in A\}</math> zugrunde, so folgt <math>{{\operatorname{G}}_{f}}=f</math>. <ref>Vgl. hierzu [[Schaubild_einer_Funktion#Dieudonné|Dieudonné]].</ref>  
* Legt man die mengentheoretische Identität einer Funktion <math>f</math> gemäß <math>f=\{(x,f(x))|x\in A\}</math> zugrunde, so folgt <math>{{\operatorname{G}}_{f}}=f</math>. <ref>Vgl. hierzu [[Schaubild_einer_Funktion#Dieudonné|Dieudonné]].</ref>
 
== Beispiele ==
== Beispiele ==
[[Datei:Schaubild_1.png|Schaubild_1.png|250px]]
* Das erste Beispiel zeigt ein Schaubild einer nicht-numerischen diskreten Funktion, bei der jedem abstrakten Objekt A, B, C, ... eindeutig ein symbolisch dargestelltes technisches Objekt zugeordnet wird.
== Beispiele 2 ==
* Das zweite Beispiel zeigt ein Schaubild einer diskreten numerischen Funktion, bei der einigen Tageszeitpunkten eindeutig eine bestimmte Temperatur zugeordnet wird.
[[Datei:Schaubild_1.png|thumb|left|250px|<b>Schaubild</b> einer abstrakten diskreten Funktion]]
* Das dritte Beispiel zeigt ein Schaubild einer kontinuierlichen Modellfunktion des Zeit-Weg-Gesetzes einer gleichmäßig beschleunigten Bewegung. Erkennbar wird hier, dass nach der doppelten Zeitdauer der vierfache Weg zurückgelegt wird.
=== Schaubild einer diskreten Funktion: Zeitabhängigkeit der Temperaturentwicklung
<!--== Forschungsumfeld ==
[[Datei:Schaubild_2.png|thumb|center|250px|<b>Schaubild</b> einer Funktion: Zeitabhängigkeit der Temperaturentwicklung]]
=== Schaubild einer kontinuierlichen Funktion ===
[[Datei:Schaubild_3.png|thumb|center|250px|<b>Schaubild</b> einer kontinuierlichen Funktion: Modellfunktion zum Zeit-Weg-Gesetz einer gleichmäßig beschleunigten Bewegung]]
 
 
 
== Forschungsumfeld ==


== Genese ==
== Genese ==


== Fachdidaktische Diskussion ==
== Fachdidaktische Diskussion ==-->
 
== Literatur ==
== Literatur ==
 
* Hischer, Horst [2016]: ''Mathematik – Medien – Bildung. Medialitätsbewusstsein als Bildungsziel: Theorie und Beis''piele. Wiesbaden: Springer Spektrum.
<!--== Quellen ==
<!--== Quellen ==
<references />-->
<references />-->
{{zitierhinweis}}
{{zitierhinweis}}

Aktuelle Version vom 15. Juni 2016, 09:18 Uhr

Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Schaubild einer abstrakten diskreten Funktion
Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Schaubild einer konkreten diskreten Funktion: Zeitabhängigkeit der Temperaturentwicklung
Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Schaubild einer kontinuierlichen Funktion: Modellfunktion zum Zeit-Weg-Gesetz einer gleichmäßig beschleunigten Bewegung

Übersicht

  • Streng genommen ist zwischen „Funktionsgraph“ (als Menge geordneter Paare) und der visualisierenden Darstellung durch ein „Schaubild“ zu unterscheiden:

Definition:

Es sei eine Funktion von der Argumentmenge in die Zielmenge , kurz: .
Dann ist der Funktionsgraph von durch definiert.

Der Funktionsgraph einer (einstelligen) Funktion [math]f[/math] von in besteht also aus allen geordneten Paaren mit und .
(Dabei ist die Definitionsmenge von , die kurz mit bezeichnet wird. Die Einschränkung auf einstellige Funktionen ist nicht notwendig, wenngleich sie aber in den meisten unterrichtsrelevanten Fällen üblich ist.)

Visualisierung von Funktionsgraphen

  • Funktionsgraphen lassen sich z. B. in einem kartesischen Koordinatensystem visualisieren, indem die geordneten Paare durch „Punkte“ mit der Abszisse (nach rechts auf der Rechtsachse bzw. der 1. Koordinatenachse) und der Ordinate (nach oben auf der Hochachse bzw. der 2. Koordinatenachse) abgetragen werden. Insbesondere Funktionsgraphen reeller Funktionen werden auf diese Weise visualisiert.
  • Anstelle eines kartesischen Koordinatensystems sind auch andere zweidimensionale Koordinatensysteme möglich, z. B. Polarkoordinatensysteme. Und auch dreidimensionale Koordinatensysteme (z. B. für kartesische Koordinaten, Zylinderkoordinaten, Kugelkoordinaten) können einer Visualisierung dienen, so etwa von Raumkurven oder Flächen.)
  • Solche Visualisierungen können insbesondere zeichnerisch (von Hand als Skizze oder mit Hilfe von Zeicheninstrumenten) oder mit Hilfe von Funktionenplottern erfolgen. Die dabei erzeugten Zeichnungen oder Funktionsplots sind aber nur Darstellungen eines gegebenen Funktionsgraphen und nicht mit diesem identisch. Jede solche visualisierende Darstellung ist ein Schaubild des Funktionsgraphen und also solche nur eine Simulation des Graphen bzw. der Funktion. Solche Schaubilder sind ikonische Repräsentationen einer Funktion.
  • Ein (formaler) Funktionsgraph wird also durch ein (konkretes) Schaubild visualisiert und ist von diesem zu unterscheiden.
  • Einem konkreten Funktionsgraphen kann man verschiedene Schaubilder zuordnen.
  • Legt man die mengentheoretische Identität einer Funktion gemäß zugrunde, so folgt . [1]

Beispiele

  • Das erste Beispiel zeigt ein Schaubild einer nicht-numerischen diskreten Funktion, bei der jedem abstrakten Objekt A, B, C, ... eindeutig ein symbolisch dargestelltes technisches Objekt zugeordnet wird.
  • Das zweite Beispiel zeigt ein Schaubild einer diskreten numerischen Funktion, bei der einigen Tageszeitpunkten eindeutig eine bestimmte Temperatur zugeordnet wird.
  • Das dritte Beispiel zeigt ein Schaubild einer kontinuierlichen Modellfunktion des Zeit-Weg-Gesetzes einer gleichmäßig beschleunigten Bewegung. Erkennbar wird hier, dass nach der doppelten Zeitdauer der vierfache Weg zurückgelegt wird.

Literatur

  • Hischer, Horst [2016]: Mathematik – Medien – Bildung. Medialitätsbewusstsein als Bildungsziel: Theorie und Beispiele. Wiesbaden: Springer Spektrum.


Wenn dieser Artikel aus dem Baustellen-Namensraum in den normalen Namensraum verschoben wird, dann erhält er einen Zitierhinweis ähnlich zu diesem:
Madipedia (2016): Baustelle:Funktionsgraph neu. Version vom 15.06.2016. In: dev_madipedia. URL: http://dev.madipedia.de/index.php?title=Baustelle:Funktionsgraph_neu&oldid=24746.
  1. Vgl. hierzu Dieudonné.