Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
Lineare Funktionen: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
[gesichtete Version] | [gesichtete Version] |
K (Kortenkamp verschob Seite Baustelle:Lineare Funktionen nach Lineare Funktionen und überschrieb dabei eine Weiterleitung ohne selbst eine Weiterleitung anzulegen: Seite kann jetzt im normalen Seitenraum bearbeitet werden!) |
Keine Bearbeitungszusammenfassung |
||
(18 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
Die | == Übersicht == | ||
[[Datei:Lineare_Funktionen_Steigung.png|thumb|right|400px|Lineare Funktionen: Visualisierung von „Steigung“>]] | |||
Die meist so genannten „linearen Funktionen“ gehören zu den ersten sog. „elementaren Funktionen“, die im Mathematikunterricht auftreten. <br /> | |||
Für den schulischen Kontext gilt folgende umfassende<br /> | |||
''Definition:'' | |||
: Es sei <math>f\colon \mathbb{R} \rightarrow \mathbb{R} </math> mit <math>m\in \mathbb{R}</math>, <math>b\in \mathbb{R}</math> und <math>f(x)=m·x+b</math> für alle <math>x\in \mathbb{R}</math>.<br /> | |||
: <math>f</math> ist dann eine '''lineare Funktion'''. | |||
Das ''[[Schaubild_einer_Funktion|Schaubild]]'' des Funktionsgraphen von <math>f</math> ist eine '''Gerade''' mit der '''Steigung''' <math>m</math>. Stellt man diese Gerade in einem kartesischen Koordinatensystem mit der <math>x</math>-Achse als Rechtsachse und der <math>y</math>-Achse als Hochachse dar, so ist <math>b</math> der sog. '''<math>y</math>-Achsenabschnitt''', die Gerade verläuft also durch den Punkt mit den Koordinaten <math>(0;b)</math>. | |||
* | == Ergänzungen und Anmerkungen == | ||
* Im Mathematikunterricht tauchen lineare Funktionen anfangs noch nicht von <math>\mathbb{R}</math> in <math>\mathbb{R}</math> auf, sondern allenfalls von <math>\mathbb{Q}</math> in <math>\mathbb{Q}</math> oder sogar nur von Teilmengen davon. | |||
* Es sind „Steigung“ und „Anstieg“ zu unterscheiden: Der Anstieg ist die (absolute) „Höhendifferenz“ zwischen zwei Punkten auf einer Geraden, die Steigung ist hingegen die „relative Höhendifferenz“ zwischen zwei Punkten einer Geraden, also der Quotient aus der absoluten Höhendifferenz und der absoluten "Entfernungsdifferenz". | |||
* Die Steigung kann man – wie bei Verkehrsschildern üblich – auch in Prozent angeben. | |||
* | * Die (übliche) Bezeichnung „lineare Funktion“ ist für die hier betrachteten Funktionen eigentlich nicht korrekt: Geht man nämlich davon aus, dass „Abbildung“ und „Funktion“ Synonyme sind, so wird das Problem sofort klar, denn für eine „lineare Abbildung“ gilt <math>f(x)=m·x</math>, also ist dann <math>b=0</math>. Funktionen vom Typ <math>f(x)=m·x+b</math> müssten daher eigentlich ''„affine Funktionen“'' genannt werden, kompromissweise ist auch ''„affin-lineare Funktionen“'' denkbar. | ||
* Die im Mathematikunterricht anzutreffende Bezeichnung „proportionale Funktion“ ist vom Typ <math>f(x)=m·x</math>, also im Sinne der (Linearen) Algebra eine „lineare Abbildung“. | |||
''' | |||
''' | |||
< | |||
{{Zitierhinweis}} | {{Zitierhinweis}} |
Aktuelle Version vom 14. Juni 2016, 21:01 Uhr
Übersicht
Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Die meist so genannten „linearen Funktionen“ gehören zu den ersten sog. „elementaren Funktionen“, die im Mathematikunterricht auftreten.
Für den schulischen Kontext gilt folgende umfassende
Definition:
- Es sei mit , und Fehler beim Parsen (Syntaxfehler): {\displaystyle f(x)=m·x+b}
für alle .
- ist dann eine lineare Funktion.
Das Schaubild des Funktionsgraphen von ist eine Gerade mit der Steigung . Stellt man diese Gerade in einem kartesischen Koordinatensystem mit der -Achse als Rechtsachse und der -Achse als Hochachse dar, so ist der sog. -Achsenabschnitt, die Gerade verläuft also durch den Punkt mit den Koordinaten .
Ergänzungen und Anmerkungen
- Im Mathematikunterricht tauchen lineare Funktionen anfangs noch nicht von in auf, sondern allenfalls von in oder sogar nur von Teilmengen davon.
- Es sind „Steigung“ und „Anstieg“ zu unterscheiden: Der Anstieg ist die (absolute) „Höhendifferenz“ zwischen zwei Punkten auf einer Geraden, die Steigung ist hingegen die „relative Höhendifferenz“ zwischen zwei Punkten einer Geraden, also der Quotient aus der absoluten Höhendifferenz und der absoluten "Entfernungsdifferenz".
- Die Steigung kann man – wie bei Verkehrsschildern üblich – auch in Prozent angeben.
- Die (übliche) Bezeichnung „lineare Funktion“ ist für die hier betrachteten Funktionen eigentlich nicht korrekt: Geht man nämlich davon aus, dass „Abbildung“ und „Funktion“ Synonyme sind, so wird das Problem sofort klar, denn für eine „lineare Abbildung“ gilt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=m·x} , also ist dann . Funktionen vom Typ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=m·x+b} müssten daher eigentlich „affine Funktionen“ genannt werden, kompromissweise ist auch „affin-lineare Funktionen“ denkbar.
- Die im Mathematikunterricht anzutreffende Bezeichnung „proportionale Funktion“ ist vom Typ Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)=m·x} , also im Sinne der (Linearen) Algebra eine „lineare Abbildung“.
Der Beitrag kann wie folgt zitiert werden: Madipedia (2016): Lineare Funktionen. Version vom 14.06.2016. In: dev_madipedia. URL: http://dev.madipedia.de/index.php?title=Lineare_Funktionen&oldid=24706. |