Vorstellungen von 0,99999...: Unterschied zwischen den Versionen

K
keine Bearbeitungszusammenfassung
[unmarkierte Version][gesichtete Version]
Keine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
 
(17 dazwischenliegende Versionen von 6 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
Der Dezimalbruch <math>0,9\overline{9}</math> mit der Eigenschaft <math>0,9\overline{9} = 1</math> verursacht häufig Konflikte in den Schülervorstellungen, findet aber als Zahl keine explizite Erwähnung in den Lehrplänen respektive Rahmenrichtlinien der Schulen.
Der Dezimalbruch <math>0,\overline{9}</math> mit der besonderen Eigenschaft <math>0,\overline{9} = 1</math> verursacht häufig Konflikte in den Schülervorstellungen. In den Lehrplänen bzw. Rahmenrichtlinien wird dieses Thema meist nicht explizit erwähnt.


== Beweise für <math>0,9\overline{9} = 1</math> ==
== Beweise für <math> \textstyle 0,\overline{9} = 1</math> ==


'''Rechnerische Verfahren''' <ref name="bauer"> Bauer, Ludwig: Mathematikunterricht, Intuition, Formalisierung: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu <math>0,9\overline{9}</math>. In: Journal für Mathematikunterricht, Heft 1, 2011, 79-102 </ref>
'''Rechnerische Verfahren''' <ref name="bauer"> Bauer, Ludwig: Mathematikunterricht, Intuition, Formalisierung: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu <math>0,\overline{9}</math>. In: Journal für Mathematikunterricht, Heft 1, 2011, 79-102 </ref>


Eine erste Variante der Behandlung der Zahl 0,99999... ist die Verwendung rechnerischer Verfahren, so kann zum Beispiel mit Hilfe der [[Bruchrechnung]] gezeigt werden, dass aus dem mathematische Zusammenhang <math> \frac{1}{9} = 0,11111... = 0,1\overline{1} </math> folgt:
(1) Aus <math> \textstyle \frac{1}{9} = 0,11111... = 0,\overline{1} </math> folgt
<br /> <math> 1 = \frac{1}{9} *9 = 0,99999... = 0,9\overline{9}</math>
<br /> <math> 1 = \frac{1}{9} \cdot 9 = 0,11111...  \cdot 9 = 0,99999... = 0,\overline{9}</math>.


Der Beweis durch Verwendung von Gleichungen ist wie folgt möglich: Es sei
(2) Aus <br /> (a)   <math> x= 0,99999... (= 0,\overline{9}) </math> folgt
<br /> I   <math> x= 0,99999... (= 0,9\overline{9}) </math>
<br /> (b) <math>10 x = 9,99999... </math>
<br /> II <math>10 x = 9,99999... </math>
<br /> (b)-(a) liefert <math> 9 x = 9,00000...</math>, also <math> x = \frac{9}{9 } = 1</math>.
<br /> II-I liefert dann <math> 9 x = 9,00000...</math>, also <math> x = \frac{9}{9 } = 1</math>.
<br /> Mit (a) folgt dann <math>0,\overline{9}= 1</math>.
<br /> Mit I folgt dann <math>0,9\overline{9}= 1</math>.


'''Anschauliche Darstellung'''<ref name="bauer" />
'''Anschauliche Darstellung''' <ref name="bauer" />
<!--[[Datei:Darstellung0.9999.png]]-->
<!--[[Datei:Darstellung0.9999.png]]-->


Der Zusammenhang kann auch anschaulich bewiesen werden. Man konstruiere einen [[Zahlenstrahl]], der den Zahlenbereich von 0 bis 1 abbildet. Man kann dort leicht die Zahl 0,9 eintragen. Daraufhin vergrößern wir den Bereich zwischen 0,9 und 1. Nun lässt sich die Zahl 0,99 eintragen. Vergrößert man nun den Bereich zwischen 0,99 bis 1 so lässt sich wiederum die Zahl 0,999 eintragen. Man sieht, dass die Glieder der Folge 0,9; 0,99; 0,999; ... also immer näher an die 1 heranrücken. Verbindet man dies mit der Überlegung, wo <math>0,9\overline{9} = 0,99999...</math>  liegen könnte , erhalten wir "anschaulich" <math>0,9\overline{9} = 1</math>.
Der Zusammenhang kann auch anschaulich dargestellt werden. Auf einem [[Zahlenstrahl]], der den Zahlenbereich von 0 bis 1 enthält, kann man die Zahl 0,9 eintragen. Daraufhin vergrößern wir den Bereich zwischen 0,9 und 1, nun lässt sich die Zahl 0,99 eintragen. Vergrößert man nun den Bereich zwischen 0,99 bis 1, so lässt sich wiederum die Zahl 0,999 eintragen. Man sieht, dass die Glieder der Folge 0,9; 0,99; 0,999; ... also immer näher an die 1 heranrücken. Verbindet man dies mit der Überlegung, wo <math> \textstyle 0,\overline{9} = 0,99999...</math>  liegen könnte , erhalten wir "anschaulich" <math> \textstyle 0,\overline{9} = 1</math>.


'''Widerspruchsbeweis''' <ref name="bauer" />
'''Widerspruchsbeweis''' <ref name="bauer" />
<br /> Angenommen, es sei <math> \textstyle 0,\overline{9} < 1</math>. Dann gibt es ein <math> \epsilon </math>, das den Abstand von <math> \textstyle 0,\overline{9}</math> zu 1 beschreibt.
Dann ist <math>  \textstyle \epsilon = 1 - 0,\overline{9}</math>, d. h. <math>  \textstyle \epsilon + 0,\overline{9} = 1</math>.
Wäre aber z. B. <math>  \textstyle \epsilon = 0,000.000.001 </math>, dann ergäbe sich durch Addition
<br />  <math> \epsilon = 0,000.000.001</math>
<br /> + <math>0,\overline{9} = 0,999.999.999.999...</math>
<br /> = <math> \epsilon + 0,\overline{9} = 1,000.000.000.999 >  1</math>, im Widerspruch zur Annahme.
<br /> Dies ergibt sich ganz genauso für jedes <math> \epsilon = 10^{-k} </math> mit ''k'' aus den natürlichen Zahlen, man erhält stets einen Widerspruch zur Annahme. Da <math>0,\overline{9} > 1</math> ohnehin ausgeschlossen werden kann, muss <math> \textstyle 0,\overline{9} = 1</math> sein. Es gibt also keinen Abstand <math> \epsilon </math> zwischen <math> \textstyle 0,\overline{9} </math> und 1, egal wie klein <math> \epsilon </math> gewählt wird.


Man nehme an, dass <math>0,9\overline{9} < 1</math> ist. Dann gibt es ein ε, das den Abstand von <math>0,9\overline{9}</math> zu 1 beschreibt.
'''Beweise mit unendlichen geometrischen Reihen''' <ref name="Vogel"> Danckwerts, Rainer; Vogel, Danckwart: Analysis verständlich unterrichten. Spektrum Akademischer Verlag, 1. Auflage, Berlin Heidelberg 2006</ref>
Zur Veranschaulichung sei nun <math> \epsilon = 0,000.000.001 </math>. Dann ist <math> \epsilon = 1 - 0,9\overline{9}</math> oder anders ausgedrückt <math> \epsilon + 0,9\overline{9} = 1</math>.
<br /> Andererseits gilt aber
<br /> I  <math> \epsilon = 0,000.000.001</math>
<br /> II <math>0,9\overline{9} = 0,999.999.999.999...</math>
<br /> Mit I+II folgt <math> \epsilon + 0,9\overline{9} = 1,000.000.000.999 </math>'''>''' 1, was einen Widerspruch zur Annahme bildet.
<br /> Führt man nun diesen Beweis mit ε = 10<sup>-k</sup> mit k aus den natürlichen Zahlen, erhält man einen Widerspruch zur Annahme für alle k aus den natürlichen Zahlen. Somit war die Annahme falsch. Da <math>0,9\overline{9} > 1</math>ausgeschlossen werden kann, stellt man fest, dass math>0,9\overline{9} = 1</math> ist. Es gibt also kein Abstand ε zwischen math>0,9\overline{9} </math>und 1, egal wie klein er gewählt wird.


'''Beweise mit unendlichen geometrischen Reihen''' <ref name="Vogel"> Danckwerts, Rainer; Vogel, Danckwart: "Analysis verständlich unterrichten" Spektrum Akademischer Verlag, 1. Auflage, Berlin Heidelberg 2006</ref>
Es ist möglich, <math> \textstyle 0,\overline{9} </math> als unendliche geometrische Reihe zu schreiben:
<br /> <math> \textstyle 0,\overline{9} = 0,99999... = 0,9 + 0,09 + 0,009 + ... = 0,9 \cdot 1+ 0,9 \cdot \frac{1}{10} + 0,9 \cdot \frac{1}{100} + ... =  \textstyle \sum\limits_{n=0}^{\infty} 0,9\cdot\frac{1}{10^n} </math>.
Aus der [[Analysis]] ist bekannt, dass für die Reihen <math> \textstyle \sum\limits_{n=0}^{\infty} a\cdot q^n  =  \textstyle \frac{a}{1-q} </math> für <math> 0 < q < 1 </math> gilt.
In unserem Fall gilt also mit ''a'' = 0,9 und ''q'' = 0,1: 
<br/> <math>\sum\limits_{n=0}^{\infty} 0,9\cdot\frac{1}{10^n} = \frac {0,9}{1-0,1} = \frac{0,9}{0,9} = 1</math>.


Es ist möglich <math>0,9\overline{9} </math> als unendliche geometrische Reihe zu schreiben, also
== Schülervorstellungen zu <math> \textstyle 0,\overline{9} </math> ==
<br /> <math>0,9\overline{9} = 0,99999... = 0,9 + 0,09 + 0,009 + ... = 0,9 \cdot 1+ 0,9 \cdot (1/10) + 0,9 \cdot (1/100) + ... = \sum\limits_{n=0}^{\infty} 0,9\cdot\frac{1}{10}^n </math>.
Aus der [[Analysis]] ist bekannt, dass für die Reihen <math>\sum\limits_{n=0}^{\infty} 0,9\cdot\frac{1}{10}^n  = \frac{a}{1-q} </math> mit <math> 0 < q < 1 </math>. Für unseren Fall gilt also mit a = 0,9 und q = 0,1:  <math>\sum\limits_{n=0}^{\infty} 0,9\cdot\frac{1}{10}^n = \frac {0,9}{1-0,1} = \frac{0,9}{0,9} = 1</math>.


== Schülervorstellungen zu <math>0,9\overline{9} </math> ==
[[Ludwig Bauer]] <ref name="bauer" /> untersuchte Schülervorstellungen zu <math> \textstyle 0,\overline{9}</math>. Dabei ergab sich, dass insgesamt etwa 70 % die Meinung <math> \textstyle 0,\overline{9} < 1</math> vertreten, lediglich 30 % entschieden sich für <math> \textstyle 0,\overline{9} = 1</math>. Außerdem ist interessant, dass <math> \textstyle 0,\overline{9} < 1</math> die stärkste Zustimmung in der Klassenstufe 12 mit 91 % fand. Anscheinend führte die [[Infinitesimalrechnung]], welche die intensive Beschäftigung mit Grenzwerten einschließt, sogar zu einer Verstärkung der Ablehnung von <math> \textstyle 0,\overline{9} = 1 </math>.


In der Studie "Mathematikunterricht, Intuition, Formalisierung: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu <math>0,9\overline{9}</math>"<ref name="bauer" /> untersuchte [[Ludwig Bauer]] die Erwartungen von Schülerinnen und Schülern (SuS) gegenüber der natürlichen Zahl <math>0,9\overline{9}</math>. Dabei ergab sich insgesamt, dass 70 % der SuS die Meinung <math>0,9\overline{9} < 1</math> vertreten, lediglich 30 % entschieden sich für <math>0,9\overline{9} = 1</math>. Hieraus kann schließt er, dass der Mathematikunterricht in den untersuchten Klassen nicht verhindern konnte, dass die SuS mit großer Mehrheit für <math>0,9\overline{9} < 1</math> stimmten <ref name="bauer" />. Außerdem ist interessant, dass <math>0,9\overline{9} < 1</math> in der befragten Klassenstufe 12 mit 91 % die stärkste Zustimmung fand. Anscheinend führte sogar die bereits gelehrte [[Infinitesimalrechnung]], welche die intensive Beschäftigung mit Grenzwerten einschließt zu einer Verstärkung der Ablehnung.
'''Schülerargumente für <math>0,\overline{9} < 1</math>''' <ref name="bauer" />


'''Schülerargumente für <math>0,9\overline{9} < 1</math>''' <ref name="bauer" />
"Es fehlt immer noch ein Stückchen."
<br />"<math> \textstyle 0,\overline{9}</math> ist ganz minimal kleiner als 1."
<br />"Periode geht unendlich fort, wird die 1 aber nie berühren".
<br />"<math> \textstyle 0,\overline{9} </math> ergibt nur gerundet 1."


"Es fehlt immer noch ein Stückchen"
Hier kristallisieren sich verschiedene Argumentationsstrategien heraus:
<br />"<math>0,9\overline{9}</math> ist ganz minimal kleiner als 1"
Viele nehmen <math>0,\overline{9}</math> und 1 als deutlich unterscheidbare Objekte wahr, andere sehen <math> \textstyle 0,\overline{9}</math> als Folge, deren Glieder sich der 1 annähern, sie aber nie erreichen. Auch wird ein Bezug zu Rundungsvorgängen hergestellt.
<br />"Periode geht unendlich fort, wird die 1 aber nie berühren"
<br />"<math>0,9\overline{9} </math> ergibt nur gerundet 1"


<br />Hier kristallisieren sich verschiedene Argumentationsstrategien heraus: Viele SuS nehmen <math>0,9\overline{9}</math> und 1 als deutlich unterscheidbare Objekte wahr, anderen sehen <math>0,9\overline{9}</math> als Folge, deren Glieder sich der 1 annähern, sie aber nie erreichen. Auch wird der Bezug zu Rundungvorgängen hergestellt.
'''Schülerargumente gegen <math>0,\overline{9} < 1</math>'''<ref name="bauer" />


'''Schülerargumente gegen <math>0,9\overline{9} < 1</math>'''<ref name="bauer" />
"Das haben wir gelernt."
<br />"Weil es so ist."
<br />"<math>0,\overline{9} = \frac{9}{9} = 1</math>"
<br />"Da die <math>0,\overline{9}</math> ins Unendliche geht und sich der 1 annähert, kann man sagen, dass <math>0,\overline{9} = 1</math> ist."


"Das haben wir gelernt"
Insgesamt wirken die Argumentationen hier unsicherer. Sätze ähnlich den ersten beiden treten häufiger auf. Dennoch argumentieren einige auch mit den oben erklärten Zugängen, und im weitesten Sinne wird auch eine Annäherung an die Grenzwerte gewagt.
<br />"Weil es so ist"
<br />"<math>0,9\overline{9} = \frac{9}{9} = 1</math>"
<br />"Da die <math>0,9\overline{9}</math> ins Unendliche geht und sich der 1 annähert, kann man sagen, dass <math>0,9\overline{9} < 1</math> ist."
 
<br /> Insgesamt wirken die Argumentationen hier unsicherer. Sätze, die ähnlich der ersten beiden treten häufiger auf. Dennoch argumentieren einige SuS auch mit den oben erklärten Zugängen und im weitesten Sinne wird eine Annäherung an die Grenzwerte gewagt.


'''Zusammenfassung'''
'''Zusammenfassung'''


Innerhalb der Studie lässt sich deutlich erkennen, dass die SuS verschiedene mathematische Aspekte verwenden um ihre Entscheidung zu begründen. Weiterhin scheint ihnen der mathematische Charakter der <math>0,9\overline{9} </math> weitestgehend vage und diffus zu sein. Es dominieren anschaulich- intuitive Vorstellungen und Argumente. Die SuS konstruieren aber ihre Begründungen selbst, es werden selten Begründungen der Lehrerinnen respektive Lehrer übernommen. Außerdem ist bei den Schülerinnen und Schülern die Vorstellung vorherrschend, dass die Zahl <math>0,9\overline{9} </math> den Prozess der Annäherung an die 1 beschreibt, während in der Mathematik das Ergebnis des Prozesses, nämlich <math>0,9\overline{9} = 1</math>, gemeint ist. Eine Weiterentwicklung der Schülervorstellungen auf diesem Gebiet würde auch einen Fortschritt der Schülerinnen und Schülern im [[Kompetenzbereich Zahl]] bedeuten.
Durch die Studie lässt sich deutlich erkennen, dass die Schüler verschiedene mathematische Aspekte verwenden, um ihre Entscheidung zu begründen. Weiterhin scheint ihnen der mathematische Charakter der <math>0,\overline{9} </math> weitestgehend vage und diffus zu sein. Es dominieren anschaulich-intuitive Vorstellungen und Argumente. Die Schüler konstruieren aber ihre Begründungen meist selbst, es werden selten Begründungen der Lehrerinnen und Lehrer übernommen. Außerdem ist die Vorstellung vorherrschend, dass die Zahl <math>0,\overline{9} </math> den ''Prozess'' der Annäherung an die 1 beschreibt, während in der Mathematik das ''Ergebnis'' des Prozesses, nämlich <math>0,\overline{9} = 1</math>, gemeint ist. Eine Weiterentwicklung der Schülervorstellungen auf diesem Gebiet würde auch einen Fortschritt im [[Kompetenzbereich Zahl|Verständnis des Zahlbegriffs]] bedeuten.


== Konsequenzen für die Behandlung der Zahl <math>0,9\overline{9} </math> ==
== Konsequenzen für die Behandlung der Zahl <math>0,\overline{9} </math> ==
Mit Blick auf die oben skizzierten Schülervorstellungen lässt sich feststellen, dass Brüche zwischen innermathematischer Klärung und ursprünglichem Verstehen unvermeidlich für einen sinnstiftenden Umgang mit Mathematik sind.<ref name="Vogel"/>
Mit Blick auf die oben skizzierten Schülervorstellungen lässt sich feststellen, dass Brüche zwischen innermathematischer Klärung und ursprünglichem Verstehen unvermeidlich für einen sinnstiftenden Umgang mit Mathematik sind.<ref name="Vogel"/>
Die Grundlage für die systematische Behandlung der <math>0,9\overline{9}</math> bilden die genetischen Spiralcurricula der Bundesländer.
Eine Grundlage für die systematische Behandlung der <math>0,\overline{9}</math> bilden die Spiralcurricula der Bundesländer.
Beginnend mit der Bruchrechnung in Klasse 6 kann mittels der Darstellung <math>0,9\overline{9} = 9 \cdot \frac {1}{9} = 1</math> der erste Beweis geführt werden. Dieses Ergebnis erscheint allerdings eher oberflächlich und wenig nachhaltig. Deshalb ist das erneute Aufgreifen der Zahl in höheren Klassenstufe unabdingbar. <ref name="bauer" />Eine erste Wiederholung des Zusammenhanges wäre nach der Einführung von Gleichungssytemen möglich, um die Herleitung durch Verwendung von Gleichungen zu realisieren. Zur abschließenden Wiederholung wäre dann noch einmal der Beweis mit Hilfe von Reihen innerhalb der Sekundarstufe II möglich.  
Beginnend mit der Bruchrechnung in Klasse 6 kann mittels der Darstellung <math>0,\overline{9} = 9 \cdot \frac {1}{9} = 1</math> der erste Beweis geführt werden. Dieses Ergebnis erscheint allerdings eher oberflächlich und wenig nachhaltig. Deshalb ist das erneute Aufgreifen der Zahl in höheren Klassenstufe unabdingbar. <ref name="bauer" /> Eine erste Wiederholung des Zusammenhanges wäre durch Verwendung von Gleichungen zu realisieren. Zur abschließenden Wiederholung wäre dann noch einmal der Beweis mit Hilfe von Reihen innerhalb der Sekundarstufe II möglich.  
Mit Blick auf die Ergebnisse der Studie von [[Ludwig Bauer]] muss auf die Behandlung der Zahl <math>0,9\overline{9} </math> in der Oberstufe geachtet werden, die Behandlung des Grenzwertbegriffes und die Einführung der Infinitesimalrechnung sollte die Wiederholung unterstützen. Weiterhin weißt [[Ludwig Bauer|Bauer]] darauf hin, dass "... im Sinne eines genetisch-konstruktivistischen Lernverständnisses [...] auch dieser indirekte Beweis alleine nicht ausreichend [''ist'']. Eine einzelne unterrichtliche Aktion, sei es ein Rechenverfahren oder ein Beweis, hat wohl eher nur die Wirkung einer „Überredung“ der Schülerinnen und Schüler. Eine echte „Überzeugung“, dass <math>0,9\overline{9}=1</math> und dass <math>0,9\overline{9}</math> der Grenzwert der Folge 0,9, 0,99 usw. ist, entwickeln die Schülerinnen und Schüler wohl nur dann, wenn sie alle bisher gesammelten Erfahrungen aufeinander beziehen und reflektieren." <ref name="bauer" />


Mit Blick auf die Ergebnisse der Studie von [[Ludwig Bauer]] muss auf die Behandlung der Zahl <math>0,\overline{9} </math> in der Oberstufe geachtet werden, die Behandlung des Grenzwertbegriffes und die Einführung der Infinitesimalrechnung sollte die Wiederholung unterstützen. Weiterhin weist [[Ludwig Bauer|Bauer]] darauf hin, dass "... im Sinne eines genetisch-konstruktivistischen Lernverständnisses [...] auch dieser indirekte Beweis alleine nicht ausreichend [''ist'']. Eine einzelne unterrichtliche Aktion, sei es ein Rechenverfahren oder ein Beweis, hat wohl eher nur die Wirkung einer 'Überredung' der Schülerinnen und Schüler. Eine echte 'Überzeugung', dass <math>0,\overline{9}=1</math> und dass <math>0,\overline{9}</math> der Grenzwert der Folge 0,9, 0,99 usw. ist, entwickeln die Schülerinnen und Schüler wohl nur dann, wenn sie alle bisher gesammelten Erfahrungen aufeinander beziehen und reflektieren." <ref name="bauer" />


==Zitatquellen und verwendete Literatur==
==Zitatquellen und verwendete Literatur==