Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
Funktionsgleichung: Unterschied zwischen den Versionen
| [gesichtete Version] | [gesichtete Version] |
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
| Zeile 42: | Zeile 42: | ||
[[Kategorie:Sekundarstufe 1]] | [[Kategorie:Sekundarstufe 1]] | ||
[[Kategorie:Sekundarstufe 2]] | [[Kategorie:Sekundarstufe 2]] | ||
{{zitierhinweis}} | |||
Version vom 2. Februar 2015, 15:39 Uhr
Eine Funktionsgleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f: A \rightarrow B} beschreibt die Zuordnungsvorschrift zwischen den Mengen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A} ,Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B} durch Terme und Gleichungen. Die Menge Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A} wird als Definitionsbereich und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B} als Wertebereich bezeichnet.
Beschreibung
Beispiele für Funktionsgleichungen sind unter anderem die allgemeinen Formen der verschiedenen Funktionsarten:
| Funktionsart | Allgemeine Form |
| Lineare Funktionen | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y=f(x)=mx+n} |
| Quadratische Funktionen | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y=f(x)=ax^2+bx+c} |
| Kubische Funktionen | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y=f(x)=ax^3+bx^2+cx+d} |
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle m}
,Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle n}
,Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle a}
,Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle b}
,Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle c}
,Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle d}
sind Parameter aus einer entsprechenden Menge Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M}
, welche die Funktion charakterisieren.
Exemplarische Beispielaufgaben aus der Schulbuchliteratur
- Gymnasium
- Klassenstufe 8:
- Mathematik 8 Sachsen-Anhalt Gymnasium (2006): Mathematik Klasse 8, Duden Paetec, ISBN-13:9783898185882, S.67
- Klassenstufe 10:
- Mathematik 10 Sachsen-Anhalt Gymnasium (2004): Mathematik Klasse 10, Duden Paetec, ISBN-13:9783898181532, S.44
- Klassenstufe 11:
- Elemente der Mathematik 11 (2001): Mathematik Klasse 11, Schroedel Verlag GmbH, ISBN-10:3507839318, S.10
Autoren
- u.a. erstellt von Andreas Schmidt im Rahmen eines Mathematikdidaktik-Seminars an der Martin-Luther-Universität Halle-Wittenberg
| Der Beitrag kann wie folgt zitiert werden: Madipedia (2015): Funktionsgleichung. Version vom 2.02.2015. In: dev_madipedia. URL: http://dev.madipedia.de/index.php?title=Funktionsgleichung&oldid=20340. |