Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Relation: Unterschied zwischen den Versionen

Aus dev_madipedia
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Zeile 51: Zeile 51:
| <math>R</math> {{sp}} ist '''irreflexiv in'''<math>M</math> <math>:\Leftrightarrow</math> Es gilt für alle <math> x:</math> {{sp}} '''nicht''' {{sp}} <math>xRx</math>. || Nirgends Schleifen.
| <math>R</math> {{sp}} ist '''irreflexiv in'''<math>M</math> <math>:\Leftrightarrow</math> Es gilt für alle <math> x:</math> {{sp}} '''nicht''' {{sp}} <math>xRx</math>. || Nirgends Schleifen.
|-
|-
| <math>R</math> {{sp}} ist '''konnex in'''<math>M</math> <math>:\Leftrightarrow</math> Es gilt für alle <math> x,y:</math> {{sp}} <math>xRy</math> {{sp}} oder {{sp}} <math>yRx</math>. || Zwischen je zwei Punkten mindestens eine Verbindung; überall Schleifen. <ref>Statt „konnex“ sind auch die Bezeichnungen „total“ oder „vergleichbar“ üblich.</ref>
| <math>R</math> {{sp}} ist '''konnex in'''<math>M</math> <math>:\Leftrightarrow</math> Es gilt für alle <math> x,y:</math> {{sp}} <math>xRy</math> {{sp}} oder {{sp}} <math>yRx</math>. || Zwischen je zwei Punkten mindestens eine Verbindung; überall Schleifen. <ref>Statt „konnex“ sind auch die Bezeichnungen „total“ oder „vergleichbar“ üblich. Mit „konnex“ wird das lateinische „conecto“ für „Verbindung“ (hier also als „verbindend“) erfasst.</ref>
|}
|}
* '''Zur Beachtung:''' Die letzten drei Eigenschaften enthalten jeweils den wesentlichen Zusatz '''„in <math>M</math>“''', was bedeutet, dass eine Relation z. B. nicht per se „reflexiv“ sein kann, sondern dass dazu der Bezug auf eine konkrete Menge unverzichtbar ist. Und genau bei den ersten vier Eigenschaften ist dieser Zusatz nicht erforderlich.
* '''Zur Beachtung:''' Die letzten drei Eigenschaften enthalten jeweils den wesentlichen Zusatz '''„in <math>M</math>“''', was bedeutet, dass eine Relation z. B. nicht per se „reflexiv“ sein kann, sondern dass dazu der Bezug auf eine konkrete Menge unverzichtbar ist. Und genau bei den ersten vier Eigenschaften ist dieser Zusatz nicht erforderlich.

Version vom 27. August 2013, 08:36 Uhr

Verfasst von Horst Hischer

Übersicht [1]

Der Terminus „Relation“ wird in der heutigen Mathematik mit Bezug auf den Gebrauch in der Philosophie im Sinne von „Beziehung“ (und damit als „Zuordnung“) verwendet, und so wird es im einfachsten Fall im mathematischen Kontext darum gehen, „Beziehungen“ zwischen zwei Mengen bzw. genauer: zwischen den Elementen von zwei Mengen zu beschreiben, also darum, ob zu „gehört“ bzw. ob und wie zu „in Beziehung steht“, falls etwa und gilt. Eine solche Relation kann z. B. durch eine Gleichung wie oder eine Ungleichung wie beschrieben werden
Sofort ist ersichtlich, dass eine konkrete, etwa mit bezeichnete Relation dann zutreffend durch die Angabe derjenigen geordneten Paare aus der „Produktmenge“ gekennzeichnet werden kann, die hier „in Beziehung stehen“. Das führt dazu, jede Teilmenge einer solchen Produktmenge als „Relation zwischen und – oder genauer: als „Relation von nach – aufzufassen.
Da eine solche „Relation“ als Menge von geordneten Paaren aber ihre Zusammensetzung bzw. Struktur nicht verliert, wenn man in anstelle von und beliebige Obermengen wählt, liegt es nahe, bereits diese Menge von geordneten Paaren als „Relation“ zu bezeichnen, also ohne die Angabe einer bestimmten Produktmenge als Bezugsmenge. Beide Wege sind sinnvoll und jeweils situativ zu wählen.

Definitionen

Grundlegende Definitionen

Der formalmathematischen Definition von „Relation liegt“ das „geordnete Paar“ zugrunde, etwa mit bezeichnet, wobei es im Gegensatz zur mit bezeichneten Menge auf die Reihenfolge der beiden „Elemente“ ankommt. In diesem Sinne kann man die Darstellung als unmittelbar einsichtig im Sinne eines undefinierten Grundbegriffs verwenden, aber dem polnischen Mathematiker Kazimierz Kuratowski) gelang es 1921, das „geordnete Paar“ mengentheoretisch zu definieren. Dieser formale Aufbau wird kurz angedeutet:

Definitionen Anmerkungen
Voraussetzung: Es seien     Mengen und (also ).
Für beliebige Objekte     gilt::
||    heißt „geordnetes Paar“.

Es lässt sich dann mit Bezug auf die Definition der Gleichheit von zwei Mengen beweisen, dass gilt.
  lässt sich rekursiv zum geordneten -Tupel verallgemeinern.
Spezielle Namen sind für Tripel“ und für Quadrupel“.

:   heißt „Produktmenge“ oder „kartesisches Produkt“ (von und ).

  lässt sich rekursiv zu verallgemeinern.

  ist genau dann eine -stellige Relation, wenn     nur aus geordneten -Tupeln besteht. 2-stellige Relationen heißen auch „binäre Relationen“, sie bestehen damit nur aus geordneten Paaren.
  ist genau dann eine Relation von nach , wenn     gilt. Die geometrische Beziehung „Punkt liegt auf Gerade“ ist eine Relation von einer Punktmenge nach einer Geradenmenge.
  ist genau dann eine Relation in , wenn     gilt. Die „Größer-als-Beziehung“ ist eine Relation in einer Menge von Zahlen.

Für binäre Relationen wird folgende Schreibweise vereinbart::

Spezielle Relationseigenschaften und spezielle Relationen [2]

Definitionen Anmerkungen
Voraussetzung:   seien Mengen,     und   . Die nachfolgenden Erläuterungen deuten     als einen „Pfeil von   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x}   nach   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle y}.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R}   ist symmetrisch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle :\Leftrightarrow} Es gilt für alle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x,y:}   wenn   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRy} ,   dann   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle yRx} . Wenn eine Verbindung, dann in beiden Richtungen (keine Einbahnstraßen; ungerichteter Graph).
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R}   ist asymmetrisch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle :\Leftrightarrow} Es gilt für alle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x,y:}   wenn   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRy} ,   dann   nicht   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle yRx} . ) Wenn eine Verbindung, dann nur in einer Richtung; nirgends Schleifen (höchstens Einbahnstraßen, gerichteter Graph).
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R}   ist identitiv Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle :\Leftrightarrow} Es gilt für alle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x,y:}   wenn   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRy}   und   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle yRx} ,   dann   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x=y} . Verbindung zwischen verschiedenen Punkten nur in einer Richtung; Schleifen möglich. [3]
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R}   ist transitiv Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle :\Leftrightarrow} Es gilt für alle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x,y,z:}   wenn   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRy}   und   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle yRz} ,   dann   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRz} . Wenn überhaupt eine Verbindung, dann eine kürzeste (Existenz von Überbrückungspfeilen).
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R}   ist reflexiv inFehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M} Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle :\Leftrightarrow} Es gilt für alle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x:}   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRx} . Überall Schleifen.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R}   ist irreflexiv inFehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M} Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle :\Leftrightarrow} Es gilt für alle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x:}   nicht   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRx} . Nirgends Schleifen.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R}   ist konnex inFehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M} Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle :\Leftrightarrow} Es gilt für alle Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x,y:}   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRy}   oder   Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle yRx} . Zwischen je zwei Punkten mindestens eine Verbindung; überall Schleifen. [4]
  • Zur Beachtung: Die letzten drei Eigenschaften enthalten jeweils den wesentlichen Zusatz „in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle M}, was bedeutet, dass eine Relation z. B. nicht per se „reflexiv“ sein kann, sondern dass dazu der Bezug auf eine konkrete Menge unverzichtbar ist. Und genau bei den ersten vier Eigenschaften ist dieser Zusatz nicht erforderlich.
  • Eine Relation in einer Menge ist genau dann eine Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist.
  • Eine Relation in einer Menge ist genau dann eine Halbordnungsrelation, wenn sie reflexiv, identitiv und transitiv ist.
  • Eine Relation in einer Menge ist genau dann eine Totalordnungsrelation, wenn sie identitiv, transitiv und konnex ist.
  • Eine Relation in einer Menge ist genau dann eine Striktordnungsrelation, wenn sie asymmetrisch und transitiv ist.

Literatur

  • Hischer, Horst [2012]: Grundlegende Begriffe der Mathematik: Entstehung und Entwicklung. Struktur – Funktion – Zahl. Wiesbaden: Springer Spektrum.

Anmerkungen

  1. Die Darstellung basiert auf [Hischer 2012, Kapitel 4 und 5].
  2. Erläuterungen und Veranschaulichungen dazu in [Hischer 2012, 181 ff.]
  3. Statt „identitiv“ ist auch die Bezeichnung „antisymmetrisch“ üblich, was aber nicht mit „asymmetrisch“ verwechselt werden darf.
  4. Statt „konnex“ sind auch die Bezeichnungen „total“ oder „vergleichbar“ üblich. Mit „konnex“ wird das lateinische „conecto“ für „Verbindung“ (hier also als „verbindend“) erfasst.


Der Beitrag kann wie folgt zitiert werden:
Madipedia (2013): Relation. Version vom 27.08.2013. In: dev_madipedia. URL: http://dev.madipedia.de/index.php?title=Relation&oldid=12321.