Baustelle:Funktion: viele Gesichter: Unterschied zwischen den Versionen

KKeine Bearbeitungszusammenfassung
 
(4 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
== Funktionen haben viele Gesichter ==
==Übersicht: Funktionen haben viele Gesichter==
===Übersicht===
Die grundlegende mengentheoretische Definition von [[Funktion: mengentheoretische Auffassung|„'''Funktion als rechtseindeutige Relation'''“]] enthält bereits das Wesentliche und wird durch die Erweiterung über die Einbeziehung der Definitionsmenge und der Zielmenge gemäß <math>f\,:A\to B</math> und schließlich auch der Wertemenge umfassend verwendbar, so dass uns unter dieser Sichtweise und unter Berücksichtigung der [[Funktion: kulturhistorische Aspekte|'''kulturhistorischen Aspekte''']] der Entstehung des Funktionsbegriffs „Funktionen“ mit unterschiedlichen und vielfältigen [[Funktion: kulturhistorische Aspekte#warum vielfältige Gesichter von Funktionen?|„'''Gesichtern'''“]] begegnen können. Das sei nachfolgend durch einige Beispiele verdeutlicht.
Die grundlegende mengentheoretische Definition von [[Funktion: mengentheoretische Auffassung|Funktion als rechtseindeutiger Relation“]] enthält bereits das Wesentliche und wird durch die Erweiterung über die Einbeziehung der Definitionsmenge und der Zielmenge gemäß <math>f\,:A\to B</math> und schließlich auch der Wertemenge umfassend verwendbar, so dass uns unter dieser Sichtweise und unter Berücksichtigung der [[Funktion: kulturhistorische Aspekte|kulturhistorischen Aspekte]] der Entstehung des Funktionsbegriffs Funktionen mit unterschiedlichen „Gesichtern“ begegnen können. Das sei nachfolgend durch einige Beispiele verdeutlicht.


===Beispiele===
==Beispiele==
====...====
===...===
====...====
===...===
====Funktionsterm als Funktion====
===Funktionsterm als Funktion===
Ein beliebiger gemäß Definition eines arithmetischen [[Term|Terms]] gebildeter ''Funktionsterm'' <math>f(x)</math> ordnet jeder reellen oder komplexen Zahl <math>x</math> genau einen Wert zu, nämlich <math>f(x)</math>. Die Menge aller solcher geordneten Paare <math>(x,f(x))</math> ist damit rechtseindeutig, und daher ist bereits durch den Funktionsterm <math>f(x)</math> eine ''Funktion'' gegeben, was dazu führt, diesen Funktionsterm <math>f(x)</math> mit der Funktion <math>f</math> zwar nicht formal, aber inhaltlich im Wesentlichen identifizieren zu können. Obwohl also „eigentlich“ erst <math>f</math> die Funktion ist, steht bereits der Funktionsterm <math>f(x)</math> gleichermaßen für diese Funktion.
Ein beliebiger gemäß Definition eines arithmetischen [[Term|Terms]] gebildeter ''Funktionsterm'' <math>f(x)</math> ordnet jeder reellen oder komplexen Zahl <math>x</math> genau einen Wert zu, nämlich <math>f(x)</math>. Die Menge aller solcher geordneten Paare <math>(x,f(x))</math> ist damit [[Funktion: mengentheoretische Auffassung|rechtseindeutig]], und daher ist bereits durch den Funktionsterm <math>f(x)</math> eine ''[[Funktion: mengentheoretische Auffassung|Funktion]]'' gegeben, was dazu führt, diesen Funktionsterm <math>f(x)</math> mit der Funktion <math>f</math> zwar nicht formal, aber inhaltlich im Wesentlichen identifizieren zu können. Obwohl also „eigentlich“ erst <math>f</math> die Funktion ist, steht bereits der Funktionsterm <math>f(x)</math> gleichermaßen für diese Funktion.


====Funktionsgraph als Funktion====
===Funktionsgraph als Funktion===
Ist <math>f\,:A\to B</math>, so ist der zugehörige Funktionsgraph durch <math>{{\operatorname{G}}_{f}}=\{(x,f(x))|x\in A\}\subseteq A\times B</math> gegeben, und es wurde bereits festgestellt, dass <math>f=\{(x,f(x))|x\in A\}={{\operatorname{G}}_{f}}</math> gilt, also kurz <math>f={{\operatorname{G}}_{f}}</math>. Interpretiert man das in einem (nicht notwendig numerischen) kartesischen Koordinatensystem als Darstellung von mit <math>(x,f(x))</math> bezeichneten „Punkten“, so wird auf diese Weise jedem <math>x\in A</math> genau ein<math>f(x)\in B</math> zugeordnet, womit also der Funktionsgraph auch in dieser Sichtweise bereits eine Funktion '''ist'''.
Ist <math>f\,:A\to B</math>, so ist der zugehörige Funktionsgraph durch <math>{{\operatorname{G}}_{f}}=\{(x,f(x))|x\in A\}\subseteq A\times B</math> gegeben, und es wurde bereits festgestellt, dass <math>f=\{(x,f(x))|x\in A\}={{\operatorname{G}}_{f}}</math> gilt, also kurz <math>f={{\operatorname{G}}_{f}}</math>. Interpretiert man das in einem (nicht notwendig numerischen) kartesischen Koordinatensystem als Darstellung von mit <math>(x,f(x))</math> bezeichneten „Punkten“, so wird auf diese Weise jedem <math>x\in A</math> genau ein<math>f(x)\in B</math> zugeordnet, womit also der Funktionsgraph auch in dieser Sichtweise bereits eine Funktion '''ist'''.


====Funktionsplot als Funktion====
===Funktionsplot als Funktion===
Siehe hierzu die Erläuterungen unter [[Funktionenplotter]].
Siehe hierzu die Erläuterungen unter [[Funktionenplotter]].
====Digitalisierung und Diskretisierung als Funktionen====
===Digitalisierung und Diskretisierung als Funktionen===
(folgt)
(folgt)
====Hörbare Funktionen====
 
===Hörbare Funktionen===
(folgt)
(folgt)
====Sichtbare Funktionen====
===Sichtbare Funktionen===
(folgt)
(folgt)