Kurvendiskussion mit CAS: Unterschied zwischen den Versionen

K
keine Bearbeitungszusammenfassung
[unmarkierte Version][gesichtete Version]
KKeine Bearbeitungszusammenfassung
 
(7 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt)
Zeile 50: Zeile 50:
Hier sei explizit darauf hingewiesen, dass <math> M'(a)=0 </math> eine Gleichung vierten Grades ist und von den Schülern nicht gelöst werden kann. Die Nutzung des CAS zur algebraischen Lösung ist aber auch nur bedingt geeignet, da die komplizierten algebraischen Wurzelterme erschrecken und sinnvoll interpretiert werden müssen. Es bietet sich die numerische Lösung des Rechners für das gesuchte Minumum an.  
Hier sei explizit darauf hingewiesen, dass <math> M'(a)=0 </math> eine Gleichung vierten Grades ist und von den Schülern nicht gelöst werden kann. Die Nutzung des CAS zur algebraischen Lösung ist aber auch nur bedingt geeignet, da die komplizierten algebraischen Wurzelterme erschrecken und sinnvoll interpretiert werden müssen. Es bietet sich die numerische Lösung des Rechners für das gesuchte Minumum an.  


Das Ergebnis <math> a=7,8 cm </math> weicht stark vom realen Wert <math> a= 7,1 cm </math> ab. Dies kann nun weiterführend interpretiert werden.
Das Ergebnis <math> a=7,8 cm </math> weicht stark vom realen Wert <math> a= 7,1 cm </math> ab. Dies kann nun weiterführend interpretiert werden und es bietet sich eine Diskussion an.


==Aufgabenbeispiel 2: Skihänge<ref> Die folgenden Informationen und Screenshots der Aufgabe sind aus: Abitur 2013, Zentralabitur 2013 Sachsen, LK Gymnasien, 2012, 18. neu bearbeitete und ergänzte Auflage, S. 8–14, © 2012 by Stark Verlagsgesellschaft mbH & Co. KG.</ref>==
==Aufgabenbeispiel 2: Skihänge<ref> Die folgenden Informationen und Screenshots der Aufgabe sind aus: Abitur 2013, Zentralabitur 2013 Sachsen, LK Gymnasien, 2012, 18. neu bearbeitete und ergänzte Auflage, S. 8–14, © 2012 by Stark Verlagsgesellschaft mbH & Co. KG.</ref>==
Zeile 98: Zeile 98:


Hier nutzt man die Solve- Funktion des CAS, mit der man sogar direkt erzwingen kann, dass auch ein Maximum ausgebenen wird,
Hier nutzt man die Solve- Funktion des CAS, mit der man sogar direkt erzwingen kann, dass auch ein Maximum ausgebenen wird,
sollte es existieren. Die entsprechende Eingabe in einen CAS-Rechner wird in der folgenden Abbildung illustriert.  
sollte es existieren. Die entsprechende Eingabe in einen CAS-Rechner wird in der folgenden Abbildung illustriert, wobei <math> y1(x) </math> der Funktion <math> f(x)  </math> entspricht.  


[[Datei:Darstellung3.jpg]]
[[Datei:Darstellung3.jpg]]




Der höchste Punkt besitzt die Koordinaten <math> P(156,753; 80,8199) </math>.
Der höchste Punkt besitzt die Koordinaten <math> P(156,753; 80,8199) </math>, was sehr gut zu unserem Plot der ersten Abbildung passt.
Die maximale Neigung findet man an den Wendepunkten und man verfährt wie eben, nur dass man fordert, dass die zweite Ableitung der Funktion Null wird, jedoch die dritte nicht. Man erhält eine Wendestelle <math> x_w=81,2435 </math> auf dem linken Hang.
Die maximale Neigung findet man an den Wendepunkten und man verfährt wie eben, nur dass man fordert, dass die zweite Ableitung der Funktion Null wird, jedoch die dritte nicht. Man erhält eine Wendestelle <math> x_w=81,2435 </math> auf dem linken Hang.


Durch Einsetzen erkennt man, dass für den rechten Hang die Neigung an der Intervallgrenze <math> (x=240) </math> am größten ist.
Durch Einsetzen erkennt man, dass für den rechten Hang die Neigung an der Intervallgrenze <math> (x=240) </math> am größten ist. (was auch schön am Plot des Hanges erkennbar ist)




Zeile 118: Zeile 118:
für den rechten Skihang gilt: x=240 mit <math>m_r=-1,39339</math>
für den rechten Skihang gilt: x=240 mit <math>m_r=-1,39339</math>


Mit einer maximalen Neigung von 139% ist dieser Hang zum Skifahren viel zu gefährlich. Er sollte nicht für den Tourismus erschlossen werden.
Mit einer maximalen Neigung von 139% ist dieser Hang zum Skifahren viel zu gefährlich. Er sollte nicht für den Tourismus erschlossen werden. Der Sportlehrer sollte mit seiner Klasse folglich nur den linken Hang nutzen, aber auch nur mit schon erfahrenen Schülern.
 
'''Der Sinn dieser Aufgabe'''
 
Das Schöne der Aufgabe ist, dass man gleich zu Beginn die grafische Darstellung des Höhenprofils des Berges selbst erarbeiten muss. Dazu nutzt man die Potenz eines CAS. Den Sinn der Lösungen der weiteren Aufgaben kann man gut am Plot vergleichen. Hier sieht man schnell, wenn man falsche Werte erhält.
Zusätzlich spricht die Aufgabe die Schüler direkt an und veranschaulicht didaktisch vereinfacht aktuelle Problemstellungen, die in Skigebieten für die Touristensicherheit höchst relevant sind.
Desweiteren kann man auch im Anschluss mit der Klasse über diese Aufgabe diskutieren. Dazu bietet sie viel Potenzial.
Zusammenfassend bleibt festzustellen, dass durch einen Einsatz dieser Aufgabe im Unterricht und eventuellen sinnvollen Erweiterungen, über die man diskutieren kann, die drei Grunderfahrungen des Mathematikunterrichts nach [[Heinrich Winter]] abgedeckt werden können.


==Quellen==
==Quellen==
Zeile 124: Zeile 131:
<references />
<references />


[[Kategorie:Analysis]]
[[Kategorie:Analysis]] [[Kategorie:Computer im Unterricht]]
{{Zitierhinweis}}
{{Zitierhinweis}}