Funktionenplotter: Unterschied zwischen den Versionen

K
[gesichtete Version][gesichtete Version]
Zeile 16: Zeile 16:
*  Ein Funktionsplot einer reellen Funktion ''f'' kann im Allgemeinen noch nicht einmal als „Teilmenge“ des (auf ein Teilintervall von D<sub>''f''</sub> eingeschränkten) Funktionsgraphen von ''f'' angesehen werden.<br />
*  Ein Funktionsplot einer reellen Funktion ''f'' kann im Allgemeinen noch nicht einmal als „Teilmenge“ des (auf ein Teilintervall von D<sub>''f''</sub> eingeschränkten) Funktionsgraphen von ''f'' angesehen werden.<br />
Die erste Feststellung ist trivial, die zweite bedarf einer Erläuterung. Sie gründet sich auf die bei Funktionenplottern vorliegende zweifache '''Diskretisierung''' durch eine horizontale „'''Abtastung'''“ (auch „Sampling“ genannt) und eine vertikale „'''Quantisierung'''“, wie beides entsprechend auch beim Scannen von Bildern und bei der digitalen Aufzeichnung akustischer Signale vorliegt: Sowohl horizontal als auch vertikal kommen nur endlich viele äquidistante Werte für die geordneten Paare (''m'', ''n'') der Pixel in Frage (s. o.). Und selbst dann, wenn die „horizontalen“ Abtaststützstellen ''m'' bestimmten originalen Argumentstellen ''x'' maßstäblich entsprechen würden (was nicht eintreten muss), so werden die vertikalen „Abtastwerte“ (die sog. „'''Samples'''“) im Allgemeinen nur maßstäbliche ''Approximationen'' der jeweiligen Funktionswerte ''f(x)'' sein können. Bernard Winkelmann spricht daher von ''Simulation eines Funktionsgraphen'' durch einen Funktionenplotter, und zwar definiert er zuvor: <ref>[Winkelmann 1992, 34]</ref>
Die erste Feststellung ist trivial, die zweite bedarf einer Erläuterung. Sie gründet sich auf die bei Funktionenplottern vorliegende zweifache '''Diskretisierung''' durch eine horizontale „'''Abtastung'''“ (auch „Sampling“ genannt) und eine vertikale „'''Quantisierung'''“, wie beides entsprechend auch beim Scannen von Bildern und bei der digitalen Aufzeichnung akustischer Signale vorliegt: Sowohl horizontal als auch vertikal kommen nur endlich viele äquidistante Werte für die geordneten Paare (''m'', ''n'') der Pixel in Frage (s. o.). Und selbst dann, wenn die „horizontalen“ Abtaststützstellen ''m'' bestimmten originalen Argumentstellen ''x'' maßstäblich entsprechen würden (was nicht eintreten muss), so werden die vertikalen „Abtastwerte“ (die sog. „'''Samples'''“) im Allgemeinen nur maßstäbliche ''Approximationen'' der jeweiligen Funktionswerte ''f(x)'' sein können. Bernard Winkelmann spricht daher von ''Simulation eines Funktionsgraphen'' durch einen Funktionenplotter, und zwar definiert er zuvor: <ref>[Winkelmann 1992, 34]</ref>
: <small>Simulation ist die effektive Übersetzung eines mathematischen Objekts oder Prozesses in numerische Operationen und gegebenenfalls graphische Darstellungen.</small> <br />
:: Simulation ist die effektive Übersetzung eines mathematischen Objekts oder Prozesses in numerische Operationen und gegebenenfalls graphische Darstellungen. <br />
Und bezogen auf das „Funktionenplotten“ schreibt er dann:
Und bezogen auf das „Funktionenplotten“ schreibt er dann:
:<small> Das mathematische Objekt ist der Graph einer Funktion, z. B. sin ''x'' für reelle ''x''. Für die Simulation muß ich die Zahlengerade durch ein endliches Intervall ersetzen (Randbedingung), dieses Intervall durch endlich-viele Punkte darin approximieren, für diese Punkte eine Approximation des Funktionswertes berechnen, die entsprechenden Punkte durch Bildschirmpixel approximieren und diese durch Zwischenpixel verbinden. </small><br />
:: Das mathematische Objekt ist der Graph einer Funktion, z. B. sin ''x'' für reelle ''x''. Für die Simulation muß ich die Zahlengerade durch ein endliches Intervall ersetzen (Randbedingung), dieses Intervall durch endlich-viele Punkte darin approximieren, für diese Punkte eine Approximation des Funktionswertes berechnen, die entsprechenden Punkte durch Bildschirmpixel approximieren und diese durch Zwischenpixel verbinden.<br />
Funktionenplotter liefern aber nicht nur „pixelige“ und ggf. „unschöne“ Funktionsplots als „Simulation“ eines Funktionsgraphen, sondern diese Funktionsplots können wegen des sog. „[[Aliasing|Aliasings]]“ (auch als „Stroboskopeffekt“ bekannt <ref>[Winkelmann 1992, 42]</ref>) sogar katastrophal falsch sein, und zwar auch bei hoher Auflösung (also bei großer Abtastrate). <ref>Vgl. zu all diesen Aspekten: [Hischer 2002], [Hischer 2004], [Hischer 2005] und [Hischer 2006].</ref>
Funktionenplotter liefern aber nicht nur „pixelige“ und ggf. „unschöne“ Funktionsplots als „Simulation“ eines Funktionsgraphen, sondern diese Funktionsplots können wegen des sog. „[[Aliasing|Aliasings]]“ (auch als „Stroboskopeffekt“ bekannt <ref>[Winkelmann 1992, 42]</ref>) sogar katastrophal falsch sein, und zwar auch bei hoher Auflösung (also bei großer Abtastrate). <ref>Vgl. zu all diesen Aspekten: [Hischer 2002], [Hischer 2004], [Hischer 2005] und [Hischer 2006].</ref>